9 research outputs found

    Taphonomic Criteria for Identifying Iberian Lynx Dens in Quaternary Deposits

    Get PDF
    For decades, taphonomists have dedicated their efforts to assessing the nature of the massive leporid accumulations recovered at archaeological sites in the northwestern Mediterranean region. Their interest lying in the fact that the European rabbit constituted a critical part of human subsistence during the late Pleistocene and early Holocene. However, rabbits are also a key prey in the food webs of Mediterranean ecosystems and the base of the diet for several specialist predators, including the Iberian lynx (Lynx pardinus). For this reason, the origin of rabbit accumulations in northwestern Mediterranean sites has proved a veritable conundrum. Here, we present the zooarchaeological and taphonomic study of more than 3000 faunal and 140 coprolite remains recovered in layer IIIa of Cova del Gegant (Catalonia, Spain). Our analysis indicates that this layer served primarily as a den for the Iberian lynx. The lynxes modified and accumulated rabbit remains and also died at the site creating an accumulation dominated by the two taxa. However, other agents and processes, including human, intervened in the final configuration of the assemblage. Our study contributes to characterizing the Iberian lynx fossil accumulation differentiating between the faunal assemblages accumulated by lynxes and hominins

    New insights into the neolithisation process in southwest Europe according to spatial density analysis from calibrated radiocarbon dates

    Get PDF
    The agricultural way of life spreads throughout Europe via two main routes: the Danube corridor and the Mediterranean basin. Current archaeological literature describes the arrival to the Western Mediterranean as a rapid process which involves both demic and cultural models, and in this regard, the dispersal movement has been investigated using mathematical models, where the key factors are time and space. In this work, we have created a compilation of all available radiocarbon dates for the whole of Iberia, in order to draw a chronological series of maps to illustrate temporal and spatial patterns in the neolithisation process. The maps were prepared by calculating the calibrated 14C date probability density curves, as a proxy to show the spatial dynamics of the last hunter-gatherers and first farmers. Several scholars have pointed out problems linked with the variability of samples, such as the overrepresentation of some sites, the degree of regional research, the nature of the dated samples and above all the archaeological context, but we are confident that the selected dates, after applying some filters and statistical protocols, constitute a good way to approach settlement spatial patterns in Iberia at the time of the neolithisation process

    Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP

    Get PDF
    A major cosmic-impact event has been proposed at the onset of the Younger Dryas (YD) cooling episode at ≈12,800 ± 150 years before present, forming the YD Boundary (YDB) layer, distributed over 150 million km2 on four continents. In 24 dated stratigraphic sections in 10 countries of the Northern Hemisphere, the YDB layer contains a clearly defined abundance peak in nanodiamonds (NDs), a major cosmic-impact proxy. Observed ND polytypes include cubic diamonds, lonsdaleite-like crystals, and diamond-like carbon nanoparticles, called n-diamond and i-carbon. The ND abundances in bulk YDB sediments ranged up to ≈500 ppb (mean: 200 ppb) and that in carbon spherules up to ≈3700 ppb (mean: ≈750 ppb); 138 of 205 sediment samples (67%) contained no detectable NDs. Isotopic evidence indicates that YDB NDs were produced from terrestrial carbon, as with other impact diamonds, and were not derived from the impactor itself. The YDB layer is also marked by abundance peaks in other impact-related proxies, including cosmic-impact spherules, carbon spherules (some containing NDs), iridium, osmium, platinum, charcoal, aciniform carbon (soot), and high-temperature melt-glass. This contribution reviews the debate about the presence, abundance, and origin of the concentration peak in YDB NDs.We describe an updated protocol for the extraction and concentration of NDs from sediment, carbon spherules, and ice, and we describe the basis for identification and classification of YDB ND polytypes, using nine analytical approaches. The large body of evidence now obtained about YDB NDs is strongly consistent with an origin by cosmic impact at ≈12,800 cal BP and is inconsistent with formation of YDB NDs by natural terrestrial processes, including wildfires, anthropogenesis, and/or influx of cosmic dust

    Is it Intensification Yet? Current Archaeological Perspectives on the Evolution of Hunter-Gatherer Economies

    No full text
    corecore