527 research outputs found

    Causal Effect of Plasminogen Activator Inhibitor Type 1 on Coronary Heart Disease.

    Get PDF
    BACKGROUND: Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. METHODS AND RESULTS: To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. CONCLUSIONS: Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction.This work was supported by NHLBI Intramural funds to O’Donnell and Johnson. Stephen Burgess is supported by a fellowship from the Wellcome Trust (100114)

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors

    Get PDF
    Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al

    Unusual Regulation of a Leaderless Operon Involved in the Catabolism of Dimethylsulfoniopropionate in Rhodobacter sphaeroides

    Get PDF
    Rhodobacter sphaeroides strain 2.4.1 is a widely studied bacterium that has recently been shown to cleave the abundant marine anti-stress molecule dimethylsulfoniopropionate (DMSP) into acrylate plus gaseous dimethyl sulfide. It does so by using a lyase encoded by dddL, the promoter-distal gene of a three-gene operon, acuR-acuI-dddL. Transcription of the operon was enhanced when cells were pre-grown with the substrate DMSP, but this induction is indirect, and requires the conversion of DMSP to the product acrylate, the bona fide co-inducer. This regulation is mediated by the product of the promoter-proximal gene acuR, a transcriptional regulator in the TetR family. AcuR represses the operon in the absence of acrylate, but this is relieved by the presence of the co-inducer. Another unusual regulatory feature is that the acuR-acuI-dddL mRNA transcript is leaderless, such that acuR lacks a Shine-Dalgarno ribosomal binding site and 5′-UTR, and is translated at a lower level compared to the downstream genes. This regulatory unit may be quite widespread in bacteria, since several other taxonomically diverse lineages have adjacent acuR-like and acuI-like genes; these operons also have no 5′ leader sequences or ribosomal binding sites and their predicted cis-acting regulatory sequences resemble those of R. sphaeroides acuR-acuI-dddL

    Population Analysis of the Fusarium graminearum Species Complex from Wheat in China Show a Shift to More Aggressive Isolates

    Get PDF
    A large number of Fusarium isolates was collected from blighted wheat spikes originating from 175 sampling sites, covering 15 provinces in China. Species and trichothecene chemotype determination by multilocus genotyping (MLGT) indicated that F. graminearum s. str. with the 15-acetyl deoxynivalenol (15ADON) chemotype and F. asiaticum with either the nivalenol (NIV) or the 3-acetyl deoxynivalenol (3ADON) chemotype were the dominant causal agents. Bayesian model-based clustering with allele data obtained with 12 variable number of tandem repeats (VNTR) markers, detected three genetic clusters that also show distinct chemotypes. High levels of population genetic differentiation and low levels of effective number of migrants were observed between these three clusters. Additional genotypic analyses revealed that F. graminearum s. str. and F. asiaticum are sympatric. In addition, composition analysis of these clusters indicated a biased gene flow from 3ADON to NIV producers in F. asiaticum. In phenotypic analyses, F. asiaticum that produce 3ADON revealed significant advantages over F. asiaticum that produce NIV in pathogenicity, growth rate, fecundity, conidial length, trichothecene accumulation and resistance to benzimidazole. These results suggest that natural selection drives the spread of a more vigorous, more toxigenic pathogen population which also shows higher levels of fungicide resistance

    Apelin Deficiency Accelerates the Progression of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motor neurons. Recent studies have implicated that chronic hypoxia and insufficient vascular endothelial growth factor (VEGF)-dependent neuroprotection may lead to the degeneration of motor neurons in ALS. Expression of apelin, an endogenous ligand for the G protein-coupled receptor APJ, is regulated by hypoxia. In addition, recent reports suggest that apelin protects neurons against glutamate-induced excitotoxicity. Here, we examined whether apelin is an endogenous neuroprotective factor using SOD1G93A mouse model of ALS. In mouse CNS tissues, the highest expressions of both apelin and APJ mRNAs were detected in spinal cord. APJ immunoreactivity was observed in neuronal cell bodies located in gray matter of spinal cord. Although apelin mRNA expression in the spinal cord of wild-type mice was not changed from 4 to 18 weeks age, that of SOD1G93A mice was reduced along with the paralytic phenotype. In addition, double mutant apelin-deficient and SOD1G93A displayed the disease phenotypes earlier than SOD1G93A littermates. Immunohistochemical observation revealed that the number of motor neurons was decreased and microglia were activated in the spinal cord of the double mutant mice, indicating that apelin deficiency pathologically accelerated the progression of ALS. Furthermore, we showed that apelin enhanced the protective effect of VEGF on H2O2-induced neuronal death in primary neurons. These results suggest that apelin/APJ system in the spinal cord has a neuroprotective effect against the pathogenesis of ALS

    Geographical variation in radiological services: a nationwide survey

    Get PDF
    BACKGROUND: Geographical variation in health care services challenges the basic principle of fair allocation of health care resources. This study aimed to investigate geographical variation in the use of X-ray, CT, MRI and Ultrasound examinations in Norway, the contribution from public and private institutions, and the impact of accessibility and socioeconomic factors on variation in examination rates. METHODS: A nationwide survey of activity in all radiological institutions for the year 2002 was used to compare the rates per thousand of examinations in the counties. The data format was files/printouts where the examinations were recorded according to a code system. RESULTS: Overall rates per thousand of radiological examinations varied by a factor of 2.4. The use of MRI varied from 170 to 2, and CT from 216 to 56 examinations per 1000 inhabitants. Single MRI examinations (knee, cervical spine and head/brain) ranged high in variation, as did certain other spine examinations. For examination of specific organs, the counties' use of one modality was positively correlated with the use of other modalities. Private institutions accounted for 28% of all examinations, and tended towards performing a higher proportion of single examinations with high variability. Indicators of accessibility correlated positively to variation in examination rates, partly due to the figures from the county of Oslo. Correlations between examination rates and socioeconomic factors were also highly influenced by the figures from this county. CONCLUSION: The counties use of radiological services varied substantially, especially CT and MRI examinations. A likely cause of the variation is differences in accessibility. The coexistence of public and private institutions may be a source of variability, along with socioeconomic factors. The findings represent a challenge to the objective of equality in access to health care services, and indicate a potential for better allocation of overall health care resources. PREVIOUS PUBLICATION: The data applied in this article was originally published in Norwegian in: Børretzen I, Lysdahl KB, Olerud HM: Radiologi i Noreg – undersøkingsfrekvens per 2002, tidstrendar, geografisk variasjon og befolkningsdose. StrålevernRapport 2006:6. Østerås: The Norwegian Radiation Protection Authority. The Norwegian Radiation Protection Authority has given the authors permission to republish the data

    Minor surgery in general practice and effects on referrals to hospital care: Observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Strengthening primary care is the focus of many countries, as national healthcare systems with a strong primary care sector tend to have lower healthcare costs. However, it is unknown to what extent general practitioners (GPs) that perform more services generate fewer hospital referrals. The objective of this study was to examine the association between the number of surgical interventions and hospital referrals.</p> <p>Methods</p> <p>Data were derived from electronic medical records of 48 practices that participated in the Netherlands Information Network of General Practice (LINH) in 2006-2007. For each care-episode of benign neoplasm skin/nevus, sebaceous cyst or laceration/cut it was determined whether the patient was referred to a medical specialist and/or minor surgery was performed. Multilevel multinomial regression analyses were used to determine the relation between minor surgery and hospital referrals on the level of the GP-practice.</p> <p>Results</p> <p>Referral rates differed between diagnoses, with 1.0% of referrals for a laceration/cut, 8.2% for a sebaceous cyst and 10.2% for benign neoplasm skin/nevus. The GP practices performed minor surgery for a laceration/cut in 8.9% (SD:14.6) of the care-episodes, for a benign neoplasm skin/nevus in 27.4% (SD:14.4) of cases and for a sebaceous cyst in 26.4% (SD:13.8). GP practices that performed more minor surgery interventions had a lower referral rate for patients with a laceration/cut (-0.38; 95%CI:-0.60- -0.11) and those with a sebaceous cyst (-0.42; 95%CI:-0.63- -0.16), but not for people with benign neoplasm skin/nevus (-0.26; 95%CI:-0.51-0.03). However, the absolute difference in referral rate appeared to be relevant only for sebaceous cysts.</p> <p>Conclusions</p> <p>The effects of minor surgery vary between diagnoses. Minor surgery in general practice appears to be a substitute for specialist medical care only in relation to sebaceous cysts. Measures to stimulate minor surgery for sebaceous cysts may induce substitution.</p

    Endogenous antigen processing drives the primary CD4+ T cell response to influenza.

    Get PDF
    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses
    corecore