14 research outputs found
Worries about being judged versus being harmed: Disentangling the association of social anxiety and paranoia with schizotypy
Paranoia is a dimension of clinical and subclinical experiences in which others are believed to have harmful intentions. Mild paranoid concerns are relatively common in the general population, and more clinically severe paranoia shares features with social anxiety and is a key characteristic of schizotypy. Given that subclinical manifestations of schizotypy and paranoia may predict the occurrence of more severe symptoms, disentangling the associations of these related constructs may advance our understanding of their etiology; however no known studies to date have comprehensively evaluated how paranoia relates to social anxiety and schizotypy. The current research sought to examine the association of paranoia, assessed across a broad continuum of severity, with 1) the positive and negative schizotypy dimensions and 2) social anxiety. Specifically, the study tested a series of six competing, a priori models using confirmatory factor analysis in a sample of 862 young adults. As hypothesized, the data supported a four-factor model including positive schizotypy, negative schizotypy, social anxiety, and paranoia factors, suggesting that these are distinct constructs with differing patterns of interrelationships. Paranoia had a strong association with positive schizotypy, a moderate association with social anxiety, and a minimal association with negative schizotypy. The results are consistent with paranoia being part of a multidimensional model of schizotypy and schizophrenia. Prior studies treating schizotypy and schizophrenia as homogenous constructs often produce equivocal or non-replicable results because these dimensions are associated with distinct etiologies, presentations, and treatment responses; thus, the present conceptualization of paranoia within a multidimensional schizotypy framework should advance our understanding of these constructs. © 2014 Horton et al
Disease Dynamics and Bird Migration—Linking Mallards Anas platyrhynchos and Subtype Diversity of the Influenza A Virus in Time and Space
The mallard Anas platyrhynchos is a reservoir species for influenza A virus in the northern hemisphere, with particularly high prevalence rates prior to as well as during its prolonged autumn migration. It has been proposed that the virus is brought from the breeding grounds and transmitted to conspecifics during subsequent staging during migration, and so a better understanding of the natal origin of staging ducks is vital to deciphering the dynamics of viral movement pathways. Ottenby is an important stopover site in southeast Sweden almost halfway downstream in the major Northwest European flyway, and is used by millions of waterfowl each year. Here, mallards were captured and sampled for influenza A virus infection, and positive samples were subtyped in order to study possible links to the natal area, which were determined by a novel approach combining banding recovery data and isotopic measurements (δ2H) of feathers grown on breeding grounds. Geographic assignments showed that the core natal areas of studied mallards were in Estonia, southern and central Finland, and northwestern Russia. This study demonstrates a clear temporal succession of latitudes of natal origin during the course of autumn migration. We also demonstrate a corresponding and concomitant shift in virus subtypes. Acknowledging that these two different patterns were based in part upon different data, a likely interpretation worth further testing is that the early arriving birds with more proximate origins have different influenza A subtypes than the more distantly originating late autumn birds. If true, this knowledge would allow novel insight into the origins and transmission of the influenza A virus among migratory hosts previously unavailable through conventional approaches
Environmental Levels of the Antiviral Oseltamivir Induce Development of Resistance Mutation H274Y in Influenza A/H1N1 Virus in Mallards
Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals
A New Multidisciplinary Home Care Telemedicine System to Monitor Stable Chronic Human Immunodeficiency Virus-Infected Patients: A Randomized Study
BACKGROUND:
Antiretroviral therapy has changed the natural history of human immunodeficiency virus (HIV) infection in developed countries, where it has become a chronic disease. This clinical scenario requires a new approach to simplify follow-up appointments and facilitate access to healthcare professionals.
METHODOLOGY:
We developed a new internet-based home care model covering the entire management of chronic HIV-infected patients. This was called Virtual Hospital. We report the results of a prospective randomised study performed over two years, comparing standard care received by HIV-infected patients with Virtual Hospital care. HIV-infected patients with access to a computer and broadband were randomised to be monitored either through Virtual Hospital (Arm I) or through standard care at the day hospital (Arm II). After one year of follow up, patients switched their care to the other arm. Virtual Hospital offered four main services: Virtual Consultations, Telepharmacy, Virtual Library and Virtual Community. A technical and clinical evaluation of Virtual Hospital was carried out.
FINDINGS:
Of the 83 randomised patients, 42 were monitored during the first year through Virtual Hospital (Arm I) and 41 through standard care (Arm II). Baseline characteristics of patients were similar in the two arms. The level of technical satisfaction with the virtual system was high: 85% of patients considered that Virtual Hospital improved their access to clinical data and they felt comfortable with the videoconference system. Neither clinical parameters [level of CD4+ T lymphocytes, proportion of patients with an undetectable level of viral load (p = 0.21) and compliance levels >90% (p = 0.58)] nor the evaluation of quality of life or psychological questionnaires changed significantly between the two types of care.
CONCLUSIONS:
Virtual Hospital is a feasible and safe tool for the multidisciplinary home care of chronic HIV patients. Telemedicine should be considered as an appropriate support service for the management of chronic HIV infection.
TRIAL REGISTRATION:
Clinical-Trials.gov: NCT01117675
Domain II hairpin structure in ITS1 sequences as an aid in differentiating recently evolved animal and plant pathogenic fungi
The hypothesis that ITS structural features can be used to define fungal groups, where sequence analysis is unsatisfactory, was examined in plant and animal pathogenic fungi. Structural models of ITS1 regions were predicted for presumed closely related species in Colletotrichum and Trichophyton anamorphs of Arthroderma species. Structural alignment of models and comparison with ITS sequence analysis identified a variable region in a conserved hairpin formed from a common inverted repeat. Thirteen different hairpin structure models were obtained for Colletotrichum species and five different models were obtained for Trichophyton species. The different structure types could be matched to individual species and species complexes as defined by ITS sequence analysis