652 research outputs found

    Diminished temperature and vegetation seasonality over northern high latitudes

    Get PDF
    Global temperature is increasing, especially over northern lands (>50° N), owing to positive feedbacks1. As this increase is most pronounced in winter, temperature seasonality (ST)—conventionally defined as the difference between summer and winter temperatures—is diminishing over time2, a phenomenon that is analogous to its equatorward decline at an annual scale. The initiation, termination and performance of vegetation photosynthetic activity are tied to threshold temperatures3. Trends in the timing of these thresholds and cumulative temperatures above them may alter vegetation productivity, or modify vegetation seasonality (SV), over time. The relationship between ST and SV is critically examined here with newly improved ground and satellite data sets. The observed diminishment of ST and SV is equivalent to 4° and 7° (5° and 6°) latitudinal shift equatorward during the past 30 years in the Arctic (boreal) region. Analysis of simulations from 17 state-of-the-art climate models4 indicates an additional STdiminishment equivalent to a 20° equatorward shift could occur this century. How SV will change in response to such large projected ST declines and the impact this will have on ecosystem services5 are not well understood. Hence the need for continued monitoring6 of northern lands as their seasonal temperature profiles evolve to resemble thosefurther south.Lopullinen vertaisarvioitu käsikirjoitu

    Thermal photons in QGP and non-ideal effects

    Full text link
    We investigate the thermal photon production-rates using one dimensional boost-invariant second order relativistic hydrodynamics to find proper time evolution of the energy density and the temperature. The effect of bulk-viscosity and non-ideal equation of state are taken into account in a manner consistent with recent lattice QCD estimates. It is shown that the \textit{non-ideal} gas equation of state i.e ϵ3P0\epsilon-3\,P\,\neq 0 behaviour of the expanding plasma, which is important near the phase-transition point, can significantly slow down the hydrodynamic expansion and thereby increase the photon production-rates. Inclusion of the bulk viscosity may also have similar effect on the hydrodynamic evolution. However the effect of bulk viscosity is shown to be significantly lower than the \textit{non-ideal} gas equation of state. We also analyze the interesting phenomenon of bulk viscosity induced cavitation making the hydrodynamical description invalid. We include the viscous corrections to the distribution functions while calculating the photon spectra. It is shown that ignoring the cavitation phenomenon can lead to erroneous estimation of the photon flux.Comment: 11 pages, 13 figures; accepted for publication in JHE

    High-throughput in vivo vertebrate screening

    Get PDF
    We demonstrate a high-throughput platform for cellular-resolution in vivo chemical and genetic screens on zebrafish larvae. The system automatically loads zebrafish from reservoirs or multiwell plates, and positions and rotates them for high-speed confocal imaging and laser manipulation of both superficial and deep organs within 19 s without damage. We performed small-scale test screening of retinal axon guidance mutants and neuronal regeneration assays in combination with femtosecond laser microsurgery.National Institutes of Health (U.S.) (Director’s Innovator Award 1-DP2-OD002989–01)David & Lucile Packard Foundation (Award in Science and Engineering)Alfred P. Sloan Foundation (Award)Broad Institute of MIT and Harvard (Sparc Grant)National Science Foundation (U.S.) (Fellowship)Foxconn (Sponsorship

    Accelerated large-scale multiple sequence alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sequence alignment (MSA) is a fundamental analysis method used in bioinformatics and many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have only addressed the first stage of progressive alignment and consequently exhibit performance limitations according to Amdahl's Law. This work is the first known to accelerate the third stage of progressive alignment on reconfigurable hardware.</p> <p>Results</p> <p>We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data set when compared to a 2.4 GHz Core2 processor.</p> <p>Conclusions</p> <p>Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing and allows researchers to solve the larger problems that confront biologists today. Program source is available from <url>http://dna.cs.byu.edu/msa/</url>.</p

    Comparative Study of Different Memetic Algorithm Configurations for the Cyclic Bandwidth Sum Problem

    Get PDF
    The Cyclic Bandwidth Sum Problem (CBSP) is an NP-Hard Graph Embedding Problem which aims to embed a simple, finite graph (the guest) into a cycle graph of the same order (the host) while minimizing the sum of cyclic distances in the host between guest’s adjacent nodes. This paper presents preliminary results of our research on the design of a Memetic Algorithm (MA) able to solve the CBSP. A total of 24 MA versions, induced by all possible combinations of four selection schemes, two operators for recombination and three for mutation, were tested over a set of 25 representative graphs. Results compared with respect to the state-of-the-art top algorithm showed that all the tested MA versions were able to consistently improve its results and give us some insights on the suitability of the tested operators

    Immune regulation in Chandipura virus infection: characterization of CD4+ T regulatory cells from infected mice

    Get PDF
    <p>Abstract</p> <p>Back ground</p> <p>Chandipura virus produces acute infection in mice. During infection drastic reduction of CD4+, CD8+ and CD19 + cell was noticed. Depletion of lymphocytes also noticed in spleen. The reduction may be due to the regulatory mechanism of immune system to prevent the bystander host tissue injury. There are several mechanisms like generation of regulatory cells, activation induced cell death (ACID) etc were indicated to control the activation and maintain cellular homeostasis. Role of regulatory cells in homeostasis has been described in several viral diseases. This study was undertaken to characterize CD4+T regulatory cells from the infected mice.</p> <p>Method</p> <p>In this study we purified the CD4+ T cells from Chandipura virus infected susceptible Balb/c mice. CD4+ T regulatory cells were identified by expression of cell surface markers CD25, CD127 and CTLA-4 and intracellular markers Foxp3, IL-10 and TGF-beta. Antigen specificity and ability to suppress the proliferation of other lymphocytes were studied <it>in vitro </it>by purified CD4+CD25+T regulatory cells from infected mice. The proliferation was calculated by proliferation module of Flow Jo software. Expression of death receptors on regulatory cells were studied by flowcytometer.</p> <p>Results</p> <p>The CD4+ T cells isolated from infected mice expressed characteristic markers of regulatory phenotype at all post infective hours tested. The CD4+ T regulatory cells were proliferated when stimulated with Chandipura virus antigen. The regulatory cells did not suppress the proliferation of splenocytes stimulated with anti CD3 antibody when co cultured with them. Interesting observation was, while purification of CD4+ T cells by negative selection, the population of cells negative for CD4 also co purified along with CD4+ T cell. Flow cytometry analysis and light microscopy revealed that CD4 negative cells were of different size and shape (atypical) compared to the normal lymphocytes. Greater percentage of these atypical lymphocytes expressed <it>Fas </it>Ligand and Programmed Death1 (PD-1) receptor.</p> <p>Conclusion</p> <p>From these results we concluded that virus specific CD4+T regulatory cells are generated during Chandipura virus infection in mice and these cells might control the activated lymphocytes during infection by different mechanism.</p

    The Structural Features of Trask That Mediate Its Anti-Adhesive Functions

    Get PDF
    Trask/CDCP1 is a transmembrane protein with a large extracellular and small intracellular domains. The intracellular domain (ICD) undergoes tyrosine phosphorylation by Src kinases during anchorage loss and, when phosphorylated, Trask functions to inhibit cell adhesion. The extracellular domain (ECD) undergoes proteolytic cleavage by serine proteases, although the functional significance of this remains unknown. There is conflicting evidence regarding whether it functions to signal the phosphorylation of the ICD. To better define the structural determinants that mediate the anti-adhesive functions of Trask, we generated a series of deletion mutants of Trask and expressed them in tet-inducible cell models to define the structural elements involved in cell adhesion signaling. We find that the ECD is dispensable for the phosphorylation of the ICD or for the inhibition of cell adhesion. The anti-adhesive functions of Trask are entirely embodied within its ICD and are specifically due to tyrosine phosphorylation of the ICD as this function is completely lost in a phosphorylation-defective tyrosine-phenylalanine mutant. Both full length and cleaved ECDs are fully capable of phosphorylation and undergo phosphorylation during anchorage loss and cleavage is not an upstream signal for ICD phosphorylation. These data establish that the anti-adhesive functions of Trask are mediated entirely through its tyrosine phosphorylation. It remains to be defined what role, if any, the Trask ECD plays in its adhesion functions
    corecore