2,339 research outputs found
Stem Cell-Derived Respiratory Epithelial Cell Cultures as Human Disease Models
Advances in stem cell biology and the understanding of factors that determine lung stem cell self-renewal have enabled long-term in vitro culture of human lung cells derived from airway basal and alveolar type II cells. Improved capability to expand and study primary cells long-term, including in clonal cultures that are recently derived from a single cell, will allow experiments that address fundamental questions about lung homeostasis and repair, as well as translational questions in asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and lung cancer research. Here, we provide a brief history of post-natal lung epithelial cell culture and describe recent methodological advances, including some culture systems that now permit clonal cell culture. We further discuss the applications of primary cultures in defining ‘normal’ epithelium, modelling lung disease and in future cell therapies
The impact of ocean acidification on the functional morphology of foraminifera
This work was supported by the NERC UK Ocean Acidification Research Programme grant NE/H017445/1. WENA acknowledges NERC support (NE/G018502/1). DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism’s survival and fitness.Publisher PDFPeer reviewe
Thrombospondin-1-N-Terminal Domain Induces a Phagocytic State and Thrombospondin-1-C-Terminal Domain Induces a Tolerizing Phenotype in Dendritic Cells
In our previous study, we have found that thrombospondin-1 (TSP-1) is synthesized de novo upon monocyte and neutrophil apoptosis, leading to a phagocytic and tolerizing phenotype of dendritic cells (DC), even prior to DC-apoptotic cell interaction. Interestingly, we were able to show that heparin binding domain (HBD), the N-terminal portion of TSP-1, was cleaved and secreted simultaneously in a caspase- and serine protease- dependent manner. In the current study we were interested to examine the role of HBD in the clearance of apoptotic cells, and whether the phagocytic and tolerizing state of DCs is mediated by the HBD itself, or whether the entire TSP-1 is needed. Therefore, we have cloned the human HBD, and compared its interactions with DC to those with TSP-1. Here we show that rHBD by itself is not directly responsible for immune paralysis and tolerizing phenotype of DCs, at least in the monomeric form, but has a significant role in rendering DCs phagocytic. Binding of TSP-1-C-terminal domain on the other hand induces a tolerizing phenotype in dendritic cells
Exposure of mediterranean countries to ocean acidification
This study examines the potential effects of ocean acidification on countries and fisheries of the Mediterranean Sea. The implications for seafood security and supply are evaluated by examining the sensitivity of the Mediterranean to ocean acidification at chemical, biological, and macro-economic levels. The limited information available on impacts of ocean acidification on harvested (industrial, recreational, and artisanal fishing) and cultured species (aquaculture) prevents any biological impact assessment. However, it appears that non-developed nations around the Mediterranean, particularly those for which fisheries are increasing, yet rely heavily on artisanal fleets, are most greatly exposed to socioeconomic consequences from ocean acidification. © 2014 by the authors; licensee MDPI, Basel, Switzerland
Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.
Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
Ordering variable for parton showers
The parton splittings in a parton shower are ordered according to an ordering
variable, for example the transverse momentum of the daughter partons relative
to the direction of the mother, the virtuality of the splitting, or the angle
between the daughter partons. We analyze the choice of the ordering variable
and conclude that one particular choice has the advantage of factoring softer
splittings from harder splittings graph by graph in a physical gauge.Comment: 28 pages, 5 figure
Extensive dissolution of live pteropods in the Southern Ocean
The carbonate chemistry of the surface ocean is rapidly
changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94–
1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand
Inconsistent strategies to spin up models in CMIP5: Implications for ocean biogeochemical model performance assessment
This is the final version of the article. Available from EGU via the DOI in this record.During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.We sincerely thank I. Kriest, F. Joos, the
anonymous reviewer and A. Yool for their useful comments on this
paper. This work was supported by H2020 project CRESCENDO
“Coordinated Research in Earth Systems and Climate: Experiments,
kNowledge, Dissemination and Outreach”, which received
funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement no. 641816 and by
the EU FP7 project CARBOCHANGE “Changes in carbon uptake
and emissions by oceans in a changing climate” which received
funding from the European community’s Seventh Framework Programme
under grant agreement no. 264879. Supercomputing time
was provided by GENCI (Grand Equipement National de Calcul
Intensif) at CCRT (Centre de Calcul Recherche et Technologie),
allocation 016178. Finally, we are grateful to the ESGF project
which makes data available for all the community. Roland Séférian
is grateful to Aurélien Ribes for his kind advices on statistics.
Jerry Tjiputra acknowledges ORGANIC project (239965/F20)
funded by the Research Council of Norway. Christoph Heinze
and Jerry Tjiputra are grateful for support through project EVA –
Earth system modelling of climate variations in the Anthropocene
(229771/E10) funded by the Research Council of Norway, as well
as CPU-time and mass storage provided through NOTUR project
NN2345K as well as NorStore project NS2345K. Keith Lindsay
and Scott C. Doney acknowledge support from the National
Science Foundation
Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation
Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Omega_Ar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Omega_Ar,0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Var levels slightly above 1 and lower at Omega_Ar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Omega_Ar levels close to 1, with net shell growth ceasing at an Omega_Ar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean
- …