82 research outputs found

    An Inhibitory Sex Pheromone Tastes Bitter for Drosophila Males

    Get PDF
    Sexual behavior requires animals to distinguish between the sexes and to respond appropriately to each of them. In Drosophila melanogaster, as in many insects, cuticular hydrocarbons are thought to be involved in sex recognition and in mating behavior, but there is no direct neuronal evidence of their pheromonal effect. Using behavioral and electrophysiological measures of responses to natural and synthetic compounds, we show that Z-7-tricosene, a Drosophila male cuticular hydrocarbon, acts as a sex pheromone and inhibits male-male courtship. These data provide the first direct demonstration that an insect cuticular hydrocarbon is detected as a sex pheromone. Intriguingly, we show that a particular type of gustatory neurons of the labial palps respond both to Z-7-tricosene and to bitter stimuli. Cross-adaptation between Z-7-tricosene and bitter stimuli further indicates that these two very different substances are processed by the same neural pathways. Furthermore, the two substances induced similar behavioral responses both in courtship and feeding tests. We conclude that the inhibitory pheromone tastes bitter to the fly

    Peripheral, Central and Behavioral Responses to the Cuticular Pheromone Bouquet in Drosophila melanogaster Males

    Get PDF
    Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be — mostly but not only — detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i) the electrophysiological response of peripheral gustatory receptor neurons, (ii) the calcium variation in brain centers receiving these gustatory inputs and (iii) the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception

    A glial amino-acid transporter controls synapse strength and courtship in Drosophila

    Get PDF
    Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a result, genderblind mutant males courted and attempted to copulate with other Drosophila males. This homosexual behavior could be induced within hours using inducible RNAi, suggesting that genderblind controls nervous system function rather than its development. Consistent with this, and indicating that glial genderblind regulates ambient extracellular glutamate to suppress glutamatergic synapse strength in vivo, homosexual behavior could be turned on and off by altering glutamatergic transmission pharmacologically and/or genetically

    Profit enhancing competitive pressure in vertically related industries

    Get PDF
    Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing

    First Results from BISTRO: A SCUBA-2 Polarimeter Survey of the Gould Belt

    Get PDF
    We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions that the survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC 1 region. We see that the magnetic field lies approximately perpendicular to the famous "integral filament" in the densest regions of that filament. Furthermore, we see an "hourglass" magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.Includes Horizon 2020 and STFC

    Afferent-specific properties of interneuron synapses underlie selective long-term regulation of feedback inhibitory circuits in CA1 hippocampus

    No full text
    Hebbian long-term potentiation (LTP) develops at specific synapses onto hippocampal CA1 oriens/alveus interneurons (OA-INs), suggesting selective regulation of distinct input pathways. Afferent-specific properties at interneuron synapses have been characterized extensively in CA3 stratum lucidum cells, but given interneuron diversity these rules of transmission and plasticity may not hold in other interneuron types. Here, we used paired recordings and demonstrate that CA2/3 pyramidal cell (PC) feedforward and CA1 PC feedback synapses onto OA-INs show distinct AMPA receptor rectification and Ca2+ permeability, short-term plasticity and mGluR2/3-mediated inhibition. Only feedback synapses undergo Hebbian LTP. OA-IN firing during repeated synaptic stimulation displays onset-transient or late-persistent responses consistent with activation of feedforward and feedback inputs, respectively. Input–output functions are preserved after theta-burst stimulation, but late-persistent responses selectively show mGluR1-dependent long-term increases. Thus, cell type- and afferent-specific rules of transmission and plasticity underlie distinct OA-IN input–output functions, providing selective long-term regulation in feedback inhibitory networks

    GABAB receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons

    No full text
    Hippocampal stratum radiatum inhibitory interneurons receive glutamatergic excitatory innervation via the recurrent collateral fibers of CA3 pyramidal neurons and GABAergic inhibition from other interneurons. We examined both presynaptic- and postsynaptic-GABAB receptor-mediated responses at both synapse types. Postsynaptic GABAB receptor-mediated responses were absent in recordings from young (P16-18) but present in recordings from older animals (≥P30) suggesting developmental regulation. In young animals, the GABAB receptor agonist, baclofen, inhibited the amplitude of evoked EPSCs and IPSCs, an effect blocked by prior application of the selective antagonist CGP55845. Baclofen enhanced the paired-pulse ratio and coefficient of variation of evoked EPSCs and IPSCs, consistent with a presynaptic mechanism of regulation. In addition, baclofen reduced the frequency of miniature IPSCs but not mEPSCs. However, baclofen reduced the frequency of KCl-induced mEPSCs; an effect blocked by Cd2+, implicating presynaptic voltage-gated Ca2+ channels as a target for baclofen modulation. In contrast, although Cd2+ prevented the KCl-induced increase in mIPSC frequency, it failed to block baclofen's reduction of mIPSC frequency. Whereas N- and P/Q-types of Ca2+ channels contributed equally to GABAB receptor-mediated inhibition of EPSCs, more P/Q-type Ca2+ channels were involved in GABAB receptor-mediated inhibition of IPSCs. Finally, baclofen blocked the frequency-dependent depression of EPSCs and IPSCs, but was less effective at blocking frequency-dependent facilitation of EPSCs. Our results demonstrate that presynaptic GABAB receptors are expressed on the terminals of both excitatory and inhibitory synapses onto CA3 interneurons and that their activation modulates essential components of the release process underlying transmission at these two synapse types
    corecore