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Abstract

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the
Sub-millimetre Common-User Bolometer Array2 camera, with its associated polarimeter (POL-2), on the James
Clerk Maxwell Telescope in Hawaii. We discuss the survey’s aims and objectives. We describe the rationale
behind the survey, and the questions thatthe survey will aim to answer. The most important of these is the role of
magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We
describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency
with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC1
region. We see that the magnetic field lies approximately perpendicular to the famous “integral filament” in the
densest regions of that filament. Furthermore, we see an “hourglass” magnetic field morphology extending beyond
the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for
this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology
of the field along the lower-density northeastern filament. We find consistency with previous theoretical models
that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to
higher-density, self-gravitating filaments.

Key words: ISM: individual objects (Orion A, OMC1) – polarization – stars: formation – stars: magnetic field –

submillimeter: ISM

1. Introduction

Our knowledge of the star formation process has increased
dramatically as a result ofthe advent of satellites such as
Spitzer and Herschel, and sensitive far-infrared and submilli-
meter detector arrays such as the Sub-millimetre Common-User
Bolometer Array 2 (SCUBA-2). Following on from the highly
successful first-generation James Clerk Maxwell Telescope
(JCMT) Legacy Surveys, including the Gould Belt Legacy
Survey (e.g., Ward-Thompson et al. 2007, 2016; Buckle
et al. 2010; Graves et al. 2010; Sadavoy et al. 2013; Pattle
et al. 2015, 2017; Rumble et al. 2015; Salji et al. 2015; Chen
et al. 2016; Kirk et al. 2016; Mairs et al. 2016), the JCMT is
currently undertaking a series of second-generation surveys,
using the latest instruments to be commissioned on the
telescope. These include POL-2, an imaging polarimeter for
SCUBA-2. One of the surveys using POL-2 is the B-fields in
STar-forming Region Observations (BISTRO) Survey that we

report here. This is extremely timely because magnetic fields
(hereafter referred to as B-fields) are still not well understood in
star formation because ofa paucity of observational evidence,
despite widespread theoretical recognition of the significance of
B-fields in the formation of cores (e.g., Basu et al. 2009 and
references therein) and the evolution of protostars (e.g., Li
et al. 2011 and references therein).

1.1. Observing Magnetic Fields

The submillimeter continuum emission from dust grains is
polarized because the grains tend toward alignment perpendicular
to B-field lines. For asymmetric particles with some ability to be
magnetized, a series of relaxation processes brings the grains
toward their lowest energy rotation state. This is with the longest
axis perpendicular to the field (Lazarian & Hoang 2008).
Hence, with material along this axis contributing more to

the total far-infrared/submillimeter grain emission, linear

2

The Astrophysical Journal, 842:66 (10pp), 2017 June 10 Ward-Thompson et al.

mailto:wayne.holland@stfc.ac.uk
mailto:tsuyoshi.inoue@nao.ac.jp
mailto:inutsuka@nagoya-u.jp
mailto:kiwasaki@mail.doshisha.ac.jp
mailto:kawabtkj@hiroshima-u.ac.jp
mailto:quarkosmos@kasi.re.kr
mailto:koon7680@gmail.com
mailto:kevinlacaille@dal.ca
mailto:jeongeun.lee@khu.ac.kr
mailto:lidalei@xao.ac.cn
mailto:lidalei@xao.ac.cn
mailto:lidalei@xao.ac.cn
mailto:zhoujj@xao.ac.cn
mailto:zhoujj@xao.ac.cn
mailto:zhoujj@xao.ac.cn
mailto:matsu@ed.kagawa-u.ac.jp
mailto:fumitaka.nakamura@nao.ac.jp
mailto:tomisaka@th.nao.ac.jp
mailto:jsr10@cam.ac.uk
mailto:g.savini@ucl.ac.uk
mailto:hcwang@pmo.ac.cn
mailto:hcwang@pmo.ac.cn
mailto:hcwang@pmo.ac.cn
mailto:philippe.andre@cea.fr
mailto:cdd@astro.caltech.edu
mailto:S.A.E.G.Falle@leeds.ac.uk
mailto:yusuke.tsukamoto@riken.jp


polarization is seen perpendicular to the field. In the grain
alignment process, the radiative torque that spins up
irregularly shaped grains is thought to play the most
significant role (e.g., Lazarian & Hoang 2008). A few
percent polarization is detected astronomically, on scales
from protostars and jets, up to giant molecular clouds. In
some completely symmetric geometries the field lines cancel
out so that there is a polarization null. Nevertheless,
submillimeter continuum polarization surveys represent a
powerful technique for tracing the plane-of-sky B-field
orientation (e.g., Matthews et al. 2009; Dotson et al. 2010).

The fractional polarization from dust yields no direct
estimate of the B-field strength, since it is dependent on
several additional unknowns (e.g., efficiency of grain align-
ment, grain shape, and composition). However, a measure of
the field strength can be derived from the commonly used
Chandrasekhar-Fermi (C-F) method (Chandrasekhar &
Fermi 1953), and modern variants thereof (e.g., Hildebrand
et al. 2009; Houde et al. 2009), using dispersion in polarization
half-vectors (where high dispersion indicates a highly turbulent
velocity field and a weak mean B-field component; “half-
vector” refers to the ±180° ambiguity in B-field direction), the
line widths estimated from spectroscopic data, and the density
from the SCUBA-2 flux densities (e.g., Crutcher et al. 2004;
Kirk et al. 2006). Simulations show that this estimate can be
corrected for a statistical ensemble of objects to yield realistic
estimates of the field strength (Heitsch et al. 2001; Ostriker
et al. 2001; Falceta-Gonçalves et al. 2008). In addition, the
effects of multiple eddies along the line of sight have been
studied by Cho & Yoo (2016).

B-field geometries are generally inferred by preferential
emission or absorption by dust or molecules, creating polarized
light (e.g., Houde et al. 2004, 2013; Cho & Lazarian 2007).
Polarization measurements with molecules require bright
lines and are generally restricted to very densesmall-scale
structures. Near-infrared absorption polarimetry requires a
large sample of background stars and is generally limited to
more diffusecloud material oflowerdensity(Goodman
et al. 1990; see also Kwon et al. 2015; Tamura & Kwon 2015).

B-field strengths are typically measured using Zeeman
splitting of paramagnetic molecules (e.g., Crutcher
et al. 2010). While detections of Zeeman splitting in the
high-density tracer CN have been made toward extremely
bright sources (e.g., Crutcher et al. 1996), Zeeman splitting
measurements are typically restricted to lower-density regions
of molecular clouds, where the OH molecule is relatively
highly abundant (e.g., Troland & Crutcher 2008).

In contrast, polarized far-infrared and submillimeter thermal
dust emission can trace dense structures on both cloud scales
and core scales. The Planck satellite has generated an all-sky
submillimeter polarization map (Planck Collaboration
et al. 2015), allowing us to trace the large-scale B-field over
the entire sky. However, it is at too low resolution (∼4 arcmin
at 857 GHz; Planck HFI Core Team 2011) to study the detailed
cloud geometries in star-forming regions on the necessary scale
of prestellar cores and protostars. At somewhat better
resolution (30 arcsec at 250 μm; Pascale et al. 2008), the
BLASTPol balloon-borne polarimeter has mapped a limited
number of star-forming regions in great detail (e.g., Matthews
et al. 2014; Fissel 2015; Fissel et al. 2016).

1.2. Theoretical Models

The theoretical role played by B-fields in star formation has
been much discussed (e.g., Mouschovias 1991; Padoan &
Nordlund 1999; Mac Low & Klessen 2004; Nakamura &
Li 2005; Vázquez-Semadeni et al. 2011; Inutsuka et al. 2015).
However, systematic surveys to measure B-fields in star-
forming regions on the necessary resolution scales have proved
problematic (see recent reviews by Crutcher 2012; Li
et al. 2014). POL-2 with SCUBA-2 on JCMT is a facility
that can map the B-field within cold dense cores and filaments
on scales of ∼1000–2000au in nearby star-forming regions,
such as those in the Gould Belt. As such, it can provide a link
between the B-field measured on arcminute scales by Planck
(Planck Collaboration et al. 2015) and BLASTPol (e.g.,
Matthews et al. 2014) with measurements made on arcsecond
scales by interferometers such as the Submillimeter Array
(SMA; e.g., Girart et al. 2006; Tang et al. 2010; Chen
et al. 2012), Combined Array for Research in Millimeter-wave
Astronomy (CARMA; e.g., Hull et al. 2013, 2014), and the
Atacama Large Millimeter/submillimeter Array (ALMA; e.g.,
Cortes et al. 2016; Nagai et al. 2016). This intermediate-size
scale is crucial to testing theoretical models of star formation.
As a result of observations made by the Herschel satellite, it

is now widely believed that most low-mass stars form
according to the so-called filamentary star formation model
(André et al. 2014). This model has been debated for some
time. However, Herschel has shown that this appears to be the
dominant star-forming mechanism for solar-type stars (André
et al. 2014). In this scenario a cloud first breaks up into
filaments, and material flows onto the filaments along
striations, or subfilaments (e.g., Palmeirim et al. 2013). A
similar picture of movement of material along filaments was
previously observed and inferred from a combination of
spectroscopic data and simulations (e.g., Balsara et al. 2001
—using data from Richer et al. 1993). However, this was just
one region. Herschel appears to show the same mechanism in
many star-forming regions.
In this model the B-field aligns with the striations (i.e.,

perpendicular to the filaments), and helps to “funnel” matter
onto the filaments. This observationally informed paradigm has
been reproduced by recent simulations of magnetized self-
gravitating filaments (e.g., Inoue & Inutsuka 2008, 2009, 2012;
Li et al. 2010; Soler et al. 2013). Cores then form on filaments,
becoming gravitationally unstable and subsequently collapsing
to form protostars (André et al. 2014).
We know from large-scale polarization studies, e.g., Planck

and BLASTPol amonst others (see above), that large-scale
fields typically lie roughly perpendicular to their associated
filament direction (e.g., Sugitani et al. 2011; Palmeirim
et al. 2013; Matthews et al. 2014; Planck Collaboration
et al. 2015), but we do not know what happens to the field
within the dense gas of the filaments themselves, nor what
happens within the cores that form in the filaments (see
BLASTPol; Matthews et al. 2014). This is crucial to
understanding the physical processes taking place, and to
discriminating between the models of the star formation
process thatproperly incorporate B-fields (e.g., Nakamura &
Li 2005; Vázquez-Semadeni et al. 2011; Seifried &
Walch 2015).
The current hypotheses are that the field may wrap around the

filament in a helical manner (e.g., Shibata & Matsumoto 1991;
Fiege & Pudritz 2000a); turn to run parallel to the filament in the
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densest gas (e.g., the purely poloidal field model of Fiege &
Pudritz 2000b); or take on a pinched morphology perpendicular
to the long axis of the filament (e.g., Tomisaka 2015; Burge
et al. 2016), similar to that produced in initially magnetically
supported cores in the classical ambipolar-diffusion paradigm
(e.g., Galli & Shu 1993; Crutcher et al. 2004).

Theoretical studies have shown that both B-fields (e.g., Li &
Nakamura 2004; Basu et al. 2009) and turbulence (e.g.,
Klessen et al. 2000; Heitsch et al. 2011) can significantly affect
how dense structures form, collapse, and evolve in the
interstellar medium. For example, one paradigm of low-mass
star formation suggests that collapse is guided by B-fields,
producing flattened cores and disks (e.g., Mouschovias 1991).
This collapse (and subsequent protostar formation) can drag
and twist the field lines, amplifying the local field strength
during the early stages of protostellar evolution (e.g., Machida
et al. 2005; Hennebelle & Teyssier 2008; Li et al. 2011). These
twisted lines can then have significant consequences for the
emerging protostellar outflows, disks, frequency of binarity,
and stellar masses (e.g., Price & Bate 2007; Hennebelle &
Fromang 2008; Machida et al. 2011).

In fact, there is a debate aboutthe relative importance of
B-fields and turbulence in regulating the star formation process
(e.g., Mouschovias 1991; Padoan & Nordlund 2002). The
POL-2 observations, combined with our existing kinematics
from HARP-B (e.g., Buckle et al. 2010), will allow for an
investigation into the balance between gravity, turbulent
support, and B-fieldsover a statistically meaningful number
of star-forming cores in a number of regions across the
Gould Belt.

Once protostars have formed, there is also a debate about the
role that the B-field plays in shaping protostellar evolutionand
its effect on bipolar outflows. For example, recent studies on
the correlation of B-field direction with outflows, using
CARMA polarization observations, found no correlation
between outflow and field directions on scales below 1000au
(Hull et al. 2014).

In contrast, a large-scale correlation between outflow and
field directions has been found on scales of ∼10,000 au and
above (Chapman et al. 2013). One explanation of this apparent
conflict in the field morphology uses detailed modeling of
toroidally wrapped B-fields at the centers of clouds (Segura-
Cox et al. 2015). This has been used to explain early disk
formation in Class 0 protostars in a recent model in which early
disks are hypothesized to preferentially be formed in fields
misaligned with the outflow directions (Segura-Cox
et al. 2015). POL-2 data are crucial to filling in the missing
information on intermediate scales between ∼1000 and
∼10,000 au. The BISTRO survey aims to address this and all
of the other questions discussed above.

Previously, only a few prestellar and protostellar cores have
had their B-fields mapped (e.g., Holland et al. 1999; Ward-
Thompson et al. 2000, 2009; Matthews & Wilson 2002;
Crutcher et al. 2004; Kirk et al. 2006). BISTRO will map
hundreds. In this paper we describe the plan for the BISTRO
survey and discuss the first results taken on OMC1.

2. Aims and Objectives of the Survey

Previous surveys have either been piecemeal, been very
restricted in sample size (e.g., Matthews et al. 2009; Vaillancourt
& Matthews 2012; Hull et al. 2013, 2014; Matthews et al. 2014),
or have too poor resolution to detect cores and protostars (e.g.,

Planck Collaboration et al. 2015). We here describe a project that
aims to produce a large and unbiased survey of the B-fields in
star-forming molecular material in the solar vicinity, simulta-
neously at 850 and 450μm, and at relatively high resolution—
14.1 and 9.6arcsec, respectively (Dempsey et al. 2013), or
∼1000–2000au at a typical Gould Belt cloud distance.
The BISTRO Survey is a large-scale survey of the Gould

Belt clouds that we have previously mapped in continuum and
spectral lines at JCMT (e.g., Ward-Thompson et al. 2007;
Buckle et al. 2015; White et al. 2015), and in the far-infrared
with Herschel (André et al. 2010).
The aims of the project areto obtain maps of polarization

position angle and fractional polarization in a statistically
meaningful sample of cores in numerous regions; to character-
ize the evidence for and relevance of the B-field and turbulence
(in conjunction with previous and follow-up spectroscopic line
observations) in cores and their surrounding environments; to
test the predictions of low-mass star formation theories (core,
filament, outflow, andfield geometry)and grain alignment
theories; to generate a large sample of objects that are suitable
for follow-up with other instruments, such as ALMA,
Nobeyama, SMA, and NOEMA (NOrthern Extended Milli-
meter Array); and to measure the B-field strength using the C-F
method in as many clouds as possible within our sample.
The survey was granted an initial allocation of 224 hr of

telescope time to observe 16 fields in 7 different Gould Belt
clouds (Auriga, IC5146, Ophiuchus, Orion, Perseus, Serpens,
and Taurus). The specific fields were chosen to match those
previously mapped by SCUBA-2, HARP, and Herschel in the
JCMT and Herschel Gould Belt Surveys (Ward-Thompson
et al. 2007; André et al. 2010).

3. Observations

SCUBA-2 is an innovative 10,000-pixel submillimeter
camera (Holland et al. 2006) that has revolutionized sub-
millimeter astronomy in terms of its ability to carry out wide-
field surveys to previously unprecedented depths (e.g., Buckle
et al. 2015; Pattle et al. 2015). SCUBA-2 uses transition-edge
superconducting bolometer arrays, which come complete with
in-focal-plane superconducting quantum interference device
amplifiers and multiplexed readouts, and are cooled to 100mK
by a liquid-cryogen-free dilution refrigerator (Holland
et al. 2006). It has two arrays thatoperate simultaneously in
parallel, one with filters centered at 850μm and one at
450μm. In this paper we discuss 850 μm data only.
The polarimeter POL-2 (Bastien et al. 2005a, 2005b; P.

Bastien et al. 2017, in preparation; Friberg et al. 2016) has an
achromaticcontinuously rotatinghalf-wave plate in order to
modulate the signal at a faster rate (2 Hz) than atmospheric
transparency fluctuations. Thismodulation significantlyimpro-
vesthe reliability and accuracy of submillimeter polarimetric
measurements. The signal is analyzed by a wire-grid polarizer.
For calibration, a removable polarizer is also available.
Figure 1 shows a schematic of a rotating half-wave plate

polarimeter, such as the POL-2 instrument. POL-2 has three
optical components, which are (in the order that the radiation
encounters them): the calibration polarizer (not shown in
Figure 1), the rotating half-wave plate, and the polarizer. The
components are mounted in a box fixed in front of the entrance
window of the main cryostat of SCUBA-2. All components are
mounted so that they can be taken in and out of the beam
remotely, making it very easy and fast to start polarimetry at
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the telescope (Bastien et al. 2005a, 2005b; P. Bastien et al.
2017, in preparation; Friberg et al. 2016).

The BISTRO time was allocated to take place during Band2
weather (0.05 < t225 GHz < 0.08), which is typical of
moderately good weather conditions on Maunakea. The first
data were taken with POL-2 on SCUBA-2 on 2016 January 11.

The POL-2 polarimeter fully samples circular regions
with12 arcmin diameterat a resolution of 14.1arcsec in a
version of the SCUBA-2 DAISY mapping mode (Holland et al.
2013) optimized for POL-2 observations (Friberg et al. 2016).
The POL-2 DAISY scan pattern produces a central region of
3 arcmin diameterof approximately even coverage withhigh
signal-to-noise ratio, with noise increasing to the edge of the
map. The POL-2 DAISY scan pattern has a scan speed of
8arcsec/s, with a half-wave plate rotation speed of 2Hz
(Friberg et al. 2016). Continuum observations are simulta-
neously taken at 450 μm with a resolution of 9.6arcsec, but as
the 450 μm POL-2 observing mode has not yet been fully
commissioned, we do not use these data in this paper.

The data were reduced in a two-stage process. The raw
bolometer time-streams were first converted into separate
Stokes Q and Stokes U time-streams using the process calcqu
in SMURF (Chapin et al. 2013). The Q and U time-streams were
then reduced separately using an iterative map-making
technique, makemap in SMURF (Chapin et al. 2013), and
gridded to 4 arcsec pixels. The iterations were halted when the
map pixels, on average, changed by5% of the estimated map
rms noise. In order to correct for the instrumental polarization
(IP), makemap is supplied with a total intensity image of the
source, taken using SCUBA-2 while POL-2 is not in the beam.
The IP correction is discussed in detail by P. Bastien et al.
(2017, in preparation). The total intensity image of OMC1
presented in this paper was taken using the standard SCUBA-2
DAISY observing mode, and reduced using makemap using the
same convergence criterion and pixel size as the POL-2 data.

The reduced scans were combined in two stages: (1) each of
the Stokes Q observations were coadded to form a mosaic
Stokes Q image (the Stokes U maps were coadded similarly);
(2) each of the Stokes Q and U observations wascombined
using the process pol2stack in SMURF (Chapin et al. 2013) to
produce an output half-vector catalog. We refer to data

produced by thesemethods as BISTRO Internal Release
1 (IR1).
The data were calibrated in Jy/beam, using an aperture flux

conversion factor (FCF) of 725 mJy/pW at 850 μm. When
observing with POL-2, the standard SCUBA-2 850 μm FCF, of
537 Jy/beam, derived from average values of JCMT calibrators
(Dempsey et al. 2013), is increased by a factor of 1.35
throughadditional losses introduced by POL-2 (Friberg
et al. 2016; P. Bastien et al. 2017, in preparation).
The OMC1 region was observed 21 times between

2016 January 11 and 25 in a mixture of very dry weather (Band
1; t 0.05225 GHz ) and dry weather (Band 2;  t0.05 225 GHz
0.08) under JCMT project reference numbers M16AL004
(BISTRO) and M15BEC02 (POL-2 commissioning).
In order to determine the behavior of rms noise in our

observations as a function of integration time, we measured the
standard deviation on the Stokes Q and Stokes U values in a
region with relatively constant signal in both the Stokes Q and
the Stokes U maps, located between OMC1 and the Orion Bar.
This region, centered at approximately 05 35 21h m s

-  ¢ 05 23 36 ,was chosen because it was relatively flat,
moderately unpolarized, low in emission, and away from the
brightest sources, and because there was no region entirely
without signal in the central part of the map. Figure 2 shows
how the noise integrates down in this 21-repeat (∼14 hr) POL-
2 observation.
The polarization noise in Figure 2 is seen to integrate down

close to -t 0.5, as in the ideal case. The scatter of individual
measurements reduces satisfactorily as the data are subse-
quently combined. We find that there is no evidence of any
“noise floor” in long integrations. From this plot we see that
this data set has reached 2.1 mJy beam−1 rms noise in 13.5hr.
An rms noise value of ∼2 mJy beam−1 was set as the target
value for the BISTRO survey. Appendices A and B list a series
of tests that we carried out to confirm the repeatability of our
measurements and to demonstrate consistency with pre-
vious data.

Figure 1. Schematic of a rotating half-wave plate polarimeterfrom Greaves
et al. (2003).

Figure 2. Mean measured rms noise in Q and Uas a function of time (in
minutes)at a single off-source position. The data points show the scatter on the
individual measurements, and the line is the running mean. A behavior
consistent with -t 0.5 is seen, as in the ideal case.
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4. First Data from the Survey

Figure 3 shows a polarization map taken with POL-2 of the
OMC1 region of the “integral filament” in the OrionA
molecular cloud, with half-vectors rotated by 90° to trace the
B-field direction. Only vectors with a signal-to-noise ratio of 3
or greater in polarization fraction are shown (i.e., P DP 3).
The OrionA molecular cloud is a well-resolved and well-
studied region of high-mass star formation (e.g., Bally 2008;
O’Dell et al. 2008). It is the closest region of high-mass star
formation, located at a distance of 388±5 pc (Kounkel
et al. 2017). The half-vector lengths show the percentage
polarization, with a 5% scale bar in the corner to give the
calibration. The underlying image is an 850 μm total intensity
map of the same region taken using SCUBA-2.

The “integral filament” (Bally et al. 1987) can be seen
running roughly north-south through the region. The brightest
part of the filament lies just south of the center of the image.
The two brightest and most massive regions in the filament are
the northern Becklin-Neugebauer Kleinmann-Low (BN/KL)
object (Becklin & Neugebauer 1967; Kleinmann & Low 1967)
and the southern Orion South clump (Batrla et al. 1983;
Haschick & Baan 1989). Both are seen in Figure 3. In the

southeast part of the map the Orion Barphoton-dominated
region (PDR) extends from the center of the foot of the map in
a roughly northeasterly direction.
In the brightest central part of the filament, the B-field

direction, as indicated by the half-vectors, appears to lie
roughly orthogonal to the main axis of the filament. This
pattern continues on the main axis line of the filament over
most of the length of the filament. More particularly, on the
brightest part of the filament the orientation of the long axis of
the filament is estimated to be +11°.0±1°.5, while the
calculated B-field direction is −64°.2±6°.5 (both measured
north through east; note that there is a 180° ambiguity on the
B-field direction), yielding a difference of 75°.2±6°.7. The
filament direction was estimated by performing a linear
regression on the coordinates of 12 bright peaks of sub-
millimeter emission located along the linear portion of the
integral filament, as observed in the JCMT GBS 850 μm
SCUBA-2 data. The field direction was estimated by taking the
mean of the position angles of the B-field half-vectors in the
region of uniform field direction in the center of the OMC1
region, between the Orion BN/KL and S clumps.
However, away from the central axis of the filament, the field

appears to curve to either side. In the northern half of the
filament, the field appears to curve northward, delineating a
roughU-shape, centered on the filament. In the southern half of
the filament, the field appears to curve to the south, forming an
inverted U-shape. This so-called “hourglass” morphology was
first noted by Schleuning (1998) at much lower resolution and
signal-to-noise ratio, observing at 100 and 350 μm with the
Kuiper Airborne Observatory (KAO) and the Caltech Sub-
millimeter Observatory, respectively. However, we note a far
higher degree of curvature of the field lines than was seen by
Schleuning (1998).
There is a slight degree of depolarization visible toward the

centers of the BN-KL and Orion-S clumps. This is a well-
known effect resulting from tangled fields in the centers of very
dense regions (e.g., Matthews & Wilson 2002). The pattern
along the Orion Bar appears somewhat more complex.
Furthermore, in the northeastern section of the map there is a
region of half-vectors that appear to follow a different pattern.
Here the half-vectors seem to be running along a different
filament. All of the above is consistent with the much lower
signal-to-noise ratio data of Houde et al. (2004) and Matthews
et al. (2009). The interferometry data of Rao et al. (1998) on the
peaks of OMC1 are also consistent with our data. We now
discuss all of these features.

5. Discussion

Herschel has shown that the dominant formation mechanism
for prestellar cores is core formation along filaments (André
et al. 2014), revealing several examples of large-scale filaments
lying perpendicular to the (plane-of-sky) B-field directions,
as measured with large-scale absorption polarimetry (e.g.,
Palmeirim et al. 2013). This is consistent with findings from
previous emission polarization measurements from SCUPOL
on SCUBA (e.g., Matthews et al. 2001) and more recent
large-scale polarization emission data from BLASTPol (e.g.
Matthews et al. 2014). Based on these examples, a model has
emerged whereby collapse occurs first along field lines to form
filaments, and then along filaments to form cores (André
et al. 2014). In the lower-density regions around the main

Figure 3. Polarization map of the OMC1 region of the “integral filament” in
OrionA, with half-vectors rotated by 90° to show the B-field direction. The
Orion Bar can be seen in the southeastern part of the map. Half-vectors with

P DP 3 are shown. The background image is a SCUBA-2 850 μm emission
map taken using the standard SCUBA-2 DAISY mapping mode. The half-
vector gray-scale is chosen for contrast against the background SCUBA-2 map.
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filament, striations (or subfilaments) are typicallyseen parallel
to the B-field (Palmeirim et al. 2013).

The polarization pattern we have observed in OMC1 in
Figure 3 follows this theoretical picture on-axis. The main part
of the integral filament containing the BN-KL object and Orion
South has a B-field direction apparently roughly orthogonal to
the main filament direction, as mentioned above.

However, our wide-field data also allow us to trace the
B-field direction off-axis, and it is here that even more
interesting behavior is seen, as noted above, with a roughly
“hourglass” morphology. If we follow this theoretical picture,
then we would predict that the field lines started out roughly
orthogonal to the filament in the lower density as well as the
higher-density material, in a more uniform configuration, and
was subsequently distorted into its current configuration.

There appear to be two possibilities as to how the hourglass
morphology could have formed. One possibility is that the
motion of the denser central material along the filament axis
pulled the B-field lines into this configuration, as predicted by
the model (see Figure 9(a) of André et al. 2014). Another
possibility is that the well-known BN-KL outflow (Thaddeus
et al. 1972) caused the field lines in the lower-density
peripheral material to deviate from their original orientation.
The effect of the highly collimated central part of the BN-KL
outflow on the B-field on arcsecond scales is discussed by Tang
et al. (2010).

We note that the outflow has a wide opening angleand high-
velocity wings with multiple ejecta, often referred to as the
“bullets of Orion” (Allen & Burton 1993). The central point of
the outflow coincides with the position of the BN-KL object,
the northern submillimeter-bright region in Figure 3. Conse-
quently, the position and opening angle of the outflow roughly
match the central part of the hourglass pattern, as well as the
angle between the U-shape and the invertedU-shape fields, as
if the outflow had pushed aside the field. Further work is
required to decide which of these scenarios is correct.

A close-up of the Orion Bar region is shown in Figure 4.
Here we see that the field follows a more complex morphology.
At the southern end of the Bar, the field appears to be running
north-south. In the middle of the Bar, the field runs roughly
east-west. In the northern part of the Bar, the field appears to
turn again to run in a northeasterly direction.

This complex pattern clearly indicates a complex field
structure. One possibility isa field that is simply twisting along
the PDR front. Close examination of the Bar does appear to
show that the Barroughly twists in line with the field direction.
Another possibility is that the field is running helically around
the Orion Bar. In cases ascomplex as this, it is often difficult to
determine which of a number of different three-dimensional
scenarios is being projected onto our two-dimensional field of
view (see, e.g., Franzmann & Fiege 2017). However, the
simulations produced by Franzmann & Fiege (2017) show that
a helical field could produce the polarization pattern that we are
seeing.
Figure 5 shows a close-up of the northeastern filament that

runs in a roughly east-west directionand is roughly orthogonal
to the main integral filament. This is reminiscent of the
subfilaments, or striations, seen in Taurus (Palmeirim
et al. 2013), which lie perpendicular to the main filament.
Figure 5 shows that the B-field lies roughly parallel to this
subfilament, again as seen in Taurus (Palmeirim et al. 2013).
Similar behavior is also seen in the low-density striations in the
Polaris Flare region (Ward-Thompson et al. 2010; Panopoulou
et al. 2016).
Furthermore, the B-field pattern lying along the northeastern

filament appears to lie in the foreground relative to the
hourglass field. Both north and south of the northeastern
filament the field lies in a direction running northeast-south-
west, as if it continuedbehind the northeastern filament. Hence,
we hypothesize that the northeastern filament is foreground to
the rest of the cloud.
This behavior of parallel versus perpendicular field geome-

tries is predicted theoretically. For example, numerous studies
of non-self-gravitating (i.e., low-density) filaments see B-fields
lying parallel to filaments—essentially by running simulations
without gravity (e.g., Heitsch et al. 2001; Ostriker et al. 2001;
Falceta-Gonçalves et al. 2008). Nakamura & Li (2008) include
self-gravity and see “elongated condensations (i.e., dense
filaments) that are generally perpendicular to the large-
scale field”.
More recently, Soler et al. (2013) studied in detail the effects

of varying the B-field strength in a filament, as well as varying
the density of the filament. They found that field lines are
preferentially perpendicular to the filaments above a certain
critical density and parallel to the filaments below this density.

Figure 4. Polarization structure of the Orion Bar as observed with POL-2, with
half-vectors rotated 90° to show the B-field direction.

Figure 5. Polarization structure of the northeastern filament as observed with
POL-2, with half-vectors rotated 90° to show the B-field direction.
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This is exactly what we see here—the field is running
parallel to the low-density northeastern filament, and perpend-
icular to the high-density integral filament (see Figure 1 of
Soler et al. 2013). Incidentally, Soler et al. (2013) find field
lines perpendicular to filaments only in intermediate-strength
and high-strength field cases. This would tend to indicate that
the field we are observing in Orion is relatively strong.

6. Summary

In this paper we have introduced the BISTRO survey, which
will map the dense regions of many nearby star-forming clouds
with the POL-2 polarimeter and SCUBA-2 on the JCMT. We
have described the rationale behind the survey, and the
scientific questions thatthe survey will answer. The most
important of these is the role of B-fields in the star formation
process on small scales and in dense regions, and its
importance relative to other processes, such as turbulent or
nonthermal motions of the gas.

We have described the data acquisition and reduction
processes for POL-2, demonstrating that the rms noise on
BISTRO POL-2 observations decreases as -t 0.5,as expected.
We presented the first POL-2 polarization map from the
BISTRO survey, which is of the OMC1 region of OrionA,
and showed compatibility with previous observations, as well
as repeatability of the POL-2 results.

We saw that the field lies perpendicular to the integral filament
in the densest regions of that filament. Furthermore, we saw an
hourglass B-field morphology extending beyond the densest
region of the integral filament into the less-dense surrounding
material, and discussed possible causes for this. We observed a
more complex morphology along the Orion Bar.

We examined the morphology of the field along the lower-
density northeastern filament. We found consistency with
previous theoretical models that predict B-fields lying parallel
to low-density, non-self-gravitating filaments, and perpendicular
to higher-density, self-gravitating filaments.
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Appendix A
Repeatability of POL-2 Observations

In this appendix we present a demonstration of the
repeatability of POL-2 observations of extended structure.
These results are a subset of a larger study to be presented in
the POL-2 commissioning paper (P. Bastien et al. 2017,
in preparation), to which we refer the reader for further
information.
In order to test the repeatability of our observations, we

performed jackknife tests on our observations of OMC1. We
divided the data into odd- and even-numbered scans, the half-
vector maps produced from which are shown in Figure 6. This
division of scans is intentionally arbitrary, and is used to show
the variation that might be expected between any two samples,
uncorrelated in any observational property. We see excellent
consistency between the two maps.

Appendix B
Comparability of POL-2 to Previous Observations

In this appendix we compare the POL-2 map of OMC1 to
previous observations of OMC1 made using the previous
JCMT polarimeter, SCUPOL. There is no a priori reason to
expect identical performance from SCUPOL and POL-2; the
two instruments were/are mounted on different cameras
(SCUBA and SCUBA-2 respectively; see Holland et al. 1999;
Holland et al. 2006), and take data in different modes (see
Greaves et al. 2003; Friberg et al. 2016; P. Bastien et al. 2017,
in preparation). However, the two instruments take data at the
same wavelength and resolution, and so the data taken ought
to be directly comparable.
The SCUPOL observations of OMC1 were published as

part of the SCUPOL Legacy Catalog (Matthews et al. 2009).
Figure 7 shows the SCUPOL data superposed on the POL-2
data. It can be seen that the POL-2 and SCUPOL half-vectors
show a very similar morphology, but that the polarization
fractions seen in the SCUPOL half-vectors are slightly larger
than the POL-2 half-vectors. We believe that this is due to the
lower signal-to-noise ratio of the older SCUPOL data.
The similarity in the polarization angles of the POL-2 and

SCUPOL half-vectors is shown quantitatively in Figure 8. The
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POL-2 and SCUPOL polarization angles are plotted at
positions matched to within one JCMT beam (14.1 arcsec).
The two half-vector sets show correlated polarization angles,
and in fact the POL-2 and SCUPOL polarization angles are
consistent with a 1:1 relationship.

Figure 7. POL-2 (gray) and SCUPOL (white) half-vectors, overlaid on the
JCMT GBS SCUBA-2 image of OMC1.

Figure 8. Polarization angles at matched coordinates in the POL-2 and
SCUPOL maps. The dashed line shows the 1:1 line.

Figure 6. Jackknife test: polarization maps of the OMC1 region of OrionA made from odd-numbered scans (left) and even-numbered scans (right). Note that here the
half-vectors have not been rotated.
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