2,560 research outputs found

    A new infrared band in the Interstellar and Circumstellar Clouds: C_4 or C_4H?

    Get PDF
    We report on the detection with the Infrared Space Observatory (ISO) of a molecular band at 57.5 microns (174 cm^{-1}) in carbon-rich evolved stars and in Sgr B2. Taking into account the chemistry of these objects the most likelihood carrier is a carbon chain. We tentatively assign the band to the nu_5 bending mode of C_4 for which a wavenumber of 170-172.4 cm^{-1} has been derived in matrix experiments (Withey et al. 1991). An alternate carrier might be C_4H, although the frequency of its lowest energy vibrational bending mode, nu_7, is poorly known (130-226 cm^{-1}). If the carrier is C_4, the derived maximum abundance is nearly similar to that found for C_3 in the interstellar and circumstellar media by Cernicharo, Goicoechea & Caux (2000). Hence, tetra-atomic carbon could be one of the most abundant carbon chain molecules in these media.Comment: 11 pages, 1 figure, accepted in ApJ Letter

    The Illumination and Growth of CRL 2688: An Analysis of New & Archival HST Observations

    Full text link
    We present four-color images of CRL 2688 obtained in 2009 using the Wide-Field Camera 3 on HST. The F606W image is compared with archival images in very similar filters to monitor the proper motions of nebular structure. We find that the bright N-S lobes have expanded uniformly by 2.5% and that the ensemble of rings has translated radially by 0.07 in 6.65 y. The rings were ejected every 100y for ~4 millennia until the lobes formed 250y ago. Starlight scattered from the edges of the dark E-W dust lane is coincident with extant H2 images and leading tips of eight pairs of CO outflows. We interpret this as evidence that fingers lie within geometrically opposite cones of opening angles {\approx} 30{\circ} like those in CRL618. By combining our results of the rings with 12CO absorption from the extended AGB wind we ascertain that the rings were ejected at ~18 km s-1 with very little variation and that the distance to CRL2688, v_{exp}/ / {\dot\theta}_exp$, is 300 - 350 pc. Our 2009 imaging program included filters that span 0.6 to 1.6{\mu}m. We constructed a two-dimensional dust scattering model of stellar radiation through CRL2688 that successfully reproduces the details of the nebular geometry, its integrated spectral energy distribution, and nearly all of its color variations. The model implies that the optical opacity of the lobes >~ 1, the dust particle density in the rings decreases as radius^{-3} and that the mass and momentum of the AGB winds and their rings have increased over time.Comment: (51 pages, 6 figures; accepted by ApJ

    CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells

    Get PDF
    The persistence of HIV reservoirs, including latently infected, resting CD4+ T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4+ T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4+ T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV+ or SIV+ subjects, we found that most of the circulating memory CD32+ CD4+ T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a TH2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4+ T cells in peripheral blood or lymphoid tissue; isolated CD32+ resting CD4+ T cells accounted for less than 3% of the total HIV DNA in CD4+ T cells. Cell-associated HIV DNA and RNA loads in CD4+ T cells positively correlated with the frequency of CD32+ CD69+ CD4+ T cells but not with CD32 expression on resting CD4+ T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4+ T cells or of enriched HIV DNA–positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4+ T cells enriched for transcriptionally active HIV after long-term ART

    General dimensions of human brain morphometry inferred from genome-wide association data

    Get PDF
    Understanding the neurodegenerative mechanisms underlying cognitive decline in the general population may facilitate early detection of adverse health outcomes in late life. This study investigates genetic links between brain morphometry, ageing and cognitive ability. We develop Genomic Principal Components Analysis (Genomic PCA) to model general dimensions of brain-wide morphometry at the level of their underlying genetic architecture. Genomic PCA is applied to genome-wide association data for 83 brain-wide volumes (36,778 UK Biobank participants) and we extract genomic principal components (PCs) to capture global dimensions of genetic covariance across brain regions (unlike ancestral PCs that index genetic similarity between participants). Using linkage disequilibrium score regression, we estimate genetic overlap between those general brain dimensions and cognitive ageing. The first genetic PCs underlying the morphometric organisation of 83 brain-wide regions accounted for substantial genetic variance (R2  = 40%) with the pattern of component loadings corresponding closely to those obtained from phenotypic analyses. Genetically more central regions to overall brain structure - specifically frontal and parietal volumes thought to be part of the central executive network - tended to be somewhat more susceptible towards age (r = -0.27). We demonstrate the moderate genetic overlap between the first PC underlying each of several structural brain networks and general cognitive ability (rg  = 0.17-0.21), which was not specific to a particular subset of the canonical networks examined. We provide a multivariate framework integrating covariance across multiple brain regions and the genome, revealing moderate shared genetic etiology between brain-wide morphometry and cognitive ageing

    Asmparts: assembly of biological model parts

    Get PDF
    We propose a new computational tool to produce models of biological systems by assembling models from biological parts. Our software not only takes advantage of modularity, but it also enforces standardisation in part characterisation by considering a model of each part. We have used model parts in SBML to design transcriptional networks. Our software is open source, it works in linux and windows platforms, and it could be used to automatically produce models in a server. Our tool not only facilitates model design, but it will also help to promote the establishment of a registry of model parts

    Drug discovery for psychiatric disorders using high-content single-cell screening of signaling network responses ex vivo

    Get PDF
    There is a paucity of efficacious new compounds to treat neuropsychiatric disorders. We present a novel approach to neuropsychiatric drug discovery based on high-content characterization of druggable signaling network responses at the single-cell level in patient-derived lymphocytes ex vivo. Primary T lymphocytes showed functional responses encompassing neuropsychiatric medications and central nervous system ligands at established (e.g., GSK-3?) and emerging (e.g., CrkL) drug targets. Clinical application of the platform to schizophrenia patients over the course of antipsychotic treatment revealed therapeutic targets within the phospholipase C?1-calcium signaling pathway. Compound library screening against the target phenotype identified subsets of L-type calcium channel blockers and corticosteroids as novel therapeutically relevant drug classes with corresponding activity in neuronal cells. The screening results were validated by predicting in vivo efficacy in an independent schizophrenia cohort. The approach has the potential to discern new drug targets and accelerate drug discovery and personalized medicine for neuropsychiatric conditions

    A genome-wide association study identifies protein quantitative trait loci (pQTLs)

    Get PDF
    There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al
    corecore