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Abstract

Understanding the neurodegenerative mechanisms underlying cognitive decline in

the general population may facilitate early detection of adverse health outcomes in

late life. This study investigates genetic links between brain morphometry, ageing and

cognitive ability. We develop Genomic Principal Components Analysis (Genomic PCA)

to model general dimensions of brain-wide morphometry at the level of their underly-

ing genetic architecture. Genomic PCA is applied to genome-wide association data

for 83 brain-wide volumes (36,778 UK Biobank participants) and we extract genomic

principal components (PCs) to capture global dimensions of genetic covariance across

brain regions (unlike ancestral PCs that index genetic similarity between participants).

Using linkage disequilibrium score regression, we estimate genetic overlap between

those general brain dimensions and cognitive ageing. The first genetic PCs underlying

the morphometric organisation of 83 brain-wide regions accounted for substantial

genetic variance (R2 = 40%) with the pattern of component loadings corresponding

closely to those obtained from phenotypic analyses. Genetically more central regions

to overall brain structure - specifically frontal and parietal volumes thought to be part

of the central executive network - tended to be somewhat more susceptible towards

age (r = �0.27). We demonstrate the moderate genetic overlap between the first PC

underlying each of several structural brain networks and general cognitive ability
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(rg = 0.17–0.21), which was not specific to a particular subset of the canonical net-

works examined. We provide a multivariate framework integrating covariance across

multiple brain regions and the genome, revealing moderate shared genetic etiology

between brain-wide morphometry and cognitive ageing.

K E YWORD S

brain age, cognitive ability, complex traits, genetics, statistical modelling, structural brain
networks, structural neuroimageing

1 | INTRODUCTION

Progressive ageing-related neurodegenerative processes in the human

brain are well-documented across the micro- and macro-scales within

otherwise healthy adults and are linked to ageing-related declines in

multiple domains of cognitive function (Cox et al., 2016; Fjell &

Walhovd, 2010; Madole et al., 2021). Understanding the biological

processes underlying these links is paramount for identifying mecha-

nisms of cognitive ageing that can ultimately be targeted by the inter-

vention. The human brain is a complex network of partially

functionally and anatomically overlapping and interconnected regions

(Bressler & Menon, 2010; Power et al., 2011; Sporns, 2011; Yeo

et al., 2011), whose components age unevenly over time (Raz

et al., 2010), and may be differentially relevant to adult cognitive age-

ing (Cox et al., 2019; Fjell & Walhovd, 2010; Madole et al., 2021).

Whereas considerable attention has been devoted separately to

the genetic architecture of human brain morphometry (Anderson

et al., 2021; van der Meer et al., 2021; Zhao, Luo, et al., 2019) and the

genetic architecture of adult cognitive ability (de la Fuente

et al., 2021), relatively less work has explicitly linked investigations of

the genetic architecture of human brain morphometry to the putative

organisation of brain networks (although see [Arnatkeviči�utė

et al., 2021] for a recent exception). In addition, there have been few

investigations of how genetic links between components of human

brain networks relate to ageing and cognition.

To model the underlying genetic architecture of brain organisa-

tion, we developed Genomic Principal Component Analysis (Genomic

PCA), a multivariate approach in which we integrate multiple regional

brain volumes and the genome to model general dimensions of brain

structure. Using genome-wide association study (GWAS) summary

statistics as input, Genomic PCA extracts genetic principal compo-

nents (PCs) underlying multiple GWAS phenotypes (unlike the

ancestry-based PCs commonly used in genomic research that index

genetic similarity between participants). Genetic PCs underlying the

whole brain, as well as nine groups of regional brain volumes that

reflect canonical brain networks (Figure 1) are then tested for associa-

tions with cognitive ability and ageing. This genetically-informed

approach parallels a previous study modelling phenotypic PCs underly-

ing the same canonical brain networks, which showed that frontal and

parietal brain volumes—part of the central executive network—were

more important to overall brain structure (i.e., higher loadings onto a

PC underlying the whole brain), and tended to have stronger cross-

sectional associations with age than other regions of the brain

(N = 8185) (Madole et al., 2021).

The canonical brain networks examined here are based on a

whole-brain perspective, considering the existing literature that

describes synchronised (i.e., correlated) regional activity in functional

magnetic resonance imaging (MRI) data (Madole et al., 2021), in addi-

tion to converging evidence from other modalities (i.e., structural MRI

and lesion-based mapping) (Bressler & Menon, 2010; Jung &

Haier, 2007; Menon & Uddin, 2010). Among the most reported net-

works are the central executive (Sridharan et al., 2008), default mode

(Buckner & DiNicola, 2019), salience (Downar et al., 2002) and multi-

ple demand networks (Duncan, 2010). Our investigation focuses on

brain volumes within these networks because they are highly herita-

ble (Zhao, Ibrahim, et al., 2019) and are measured independently of

mental processes during MRI scanning (compared with functional

MRI). Grey matter volume is a robust predictor of general cognitive

ability (Cox et al., 2019; Hilger et al., 2020), and it partly reflects age-

related atrophy among middle-and-older adults; an important indica-

tor of ageing and health outcomes (Cole et al., 2018).

There are substantial genetic links between brain structure and

cognitive function in ageing. For example, a recent investigation ran a

GWAS on the brain age gap, which is an index of how much older

(or younger) an individual's brain appears compared to their chrono-

logical age. Substantial genetic correlations were revealed between a

dementia screening test (Mini-Mental State Examination) and brain

age in the whole brain (rg = �0.3), as well as the four brain lobes

(rg = �0.15 to �0.22), suggesting that there is a genetic component

to how quickly one's brain degrades with age.

Overall brain volume and cognitive ability are also genetically cor-

related (rg = 0.24), implicating genes involved in regulating cell growth

(Jansen et al., 2020). Biton et al. (2020) reported smaller genetic corre-

lations between intelligence and seven regional brain volumes (range

rg = 0.07–0.13), which is the only study we are aware of that consid-

ered regional volumes not normalised for global brain measures. Stud-

ies normalising for global measures report only small, or even negative

associations between cognitive ability and regional brain structures

(e.g., rg = �0.13 between intelligence and frontal lobe de Vlaming

et al., 2021; see also Grasby et al., 2020; Zhao, Luo, et al., 2019),

which is of secondary interest to our study because this only con-

siders regional variance above and beyond variance that maps onto

total brain size. Instead, we consider regional variance central to over-

all brain structure: rather than discarding it (and the regional
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information it carries; Reardon et al., 2018), we model interregional

variance because cognitive ability and ageing are brain-wide distrib-

uted phenomena (Cole et al., 2019; Hilger et al., 2020), that are more

associated with brain features shared between regions (rather than

noisy region-specific brain features) (Cox et al., 2021).

The aims of this pre-registered study are twofold (https://osf.io/

7n4qj). First, we link investigations of the genetic architecture of

human brain morphometry with canonical brain networks, to test

whether genetics operate on the same dimensions as are evident phe-

notypically. As Cheverud originally speculated, “If genetically and

environmentally based phenotypic variations are produced by similar

disruptions of developmental pathways, genetic and environmental

correlations should be similar” (Cheverud, 1988). We therefore

hypothesised a close correspondence of phenotypic and genetic mor-

phometric correlations (as demonstrated across a range of traits in

Biton et al., 2020; Sodini et al., 2018). A dissimilar organisation of phe-

notypic and genetic brain architecture would raise questions regarding

the neurobiological validity of canonical brain networks in

interindividual differences of structural grey matter. A similar organi-

sation would be consistent with a measurable genetic foundation of

structural brain networks.

Second, we investigate the extent to which genetic correlations

among brain organisation, cognitive ability and ageing corroborate the

magnitude and direction of well-established phenotypic associations.

We hypothesised substantial genetic correlations of these variables

with general morphometric dimensions across the whole brain, and

nine overlapping structural brain networks. As implied by the pheno-

typic results of Madole et al. (2021), we expected the central executive

network to play a disproportionate role in cognitive ability, which would

confirm a more precise neurobiological foundation of cognitive ability.

2 | METHODS

The UK Biobank sample consisted of 36,778 unrelated White

European participants (54% females) with available neuroimageing

F IGURE 1 Canonical brain network definitions. To scaffold the genetic architecture of human brain morphometry onto the canonical network
organisation of the brain, we consider nine overlapping brain networks. Regional volumes thought to reside within these networks are represented
through genome-wide association data of 83 grey-matter volumes (N = 36,778), and this Figure indicates which networks different volumes were
allocated to. The network definitions were adopted fromMadole et al. (2021), but are not indisputable. We used these theory-based network
definitions to apply our novel dimensionality reduction technique Genomic PCA, to obtain genetic PCs underlying clearly labelled networks. Using
these genetic PC1s, we tested whether different networks, or even the whole brain are genetically associated with cognitive ageing.
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data. They had an average age of 63.3 years at neuroimageing visits

(range from 40.0 to 81.8 years; Supplementary Methods 1.1). Stan-

dard quality checks were performed as described in Supplementary

Methods 1.2–1.3. We derived Genomic Principal Components Analysis

(Genomic PCA; Figure 2) that follows three major steps to extract gen-

eral dimensions of human brain morphometry underlying genetic

covariance across multiple brain GWAS phenotypes (unlike ancestral

PCs that index genetic similarity between participants).

First, we calculated 83 GWAS summary statistics for 83 cortical

and subcortical grey-matter volumes (33 cortical Desikan-Killiany

[Desikan et al., 2006] regions in each hemisphere +8 subcortical

regions in each hemisphere + brain stem; Figure 2.1). UKB field IDs

are listed in Supplementary Table 1. GWAS effects were fitted in a lin-

ear mixed model using REGENIE (Mbatchou et al., 2021). SNP-

heritability for each volume was comparable to those reported else-

where (Zhao, Ibrahim, et al., 2019) (mean = 0.23, range = 0.07–0.42;

Figure 3a).

Second, we calculated genetic correlation matrices indicating

genetic overlap between the 83 volumes using linkage disequilibrium

score regression (LDSC; Bulik-Sullivan et al., 2015) as implemented in

the GenomicSEM software (Grotzinger et al., 2019; Figure 2.2).

Genetic between-volume correlations are displayed in Supplementary

Figures 1–10.

Third, we extracted the first genetic principal component (PC1)

underlying genetic variance shared across multiple GWAS phenotypes

(here we used 83 brain volumes as input), by which we reduced

dimensionality from multiple to only one set of GWAS summary sta-

tistics. PC1 loadings and R2 estimates were calculated with the Eigen-

function in R (Figure 2.3a). Genome-wide SNP effects are calculated

as the average of SNP effects from multiple GWAS phenotypes

weighted by (volume-specific) PC1 loadings. Standard errors are cor-

rected for sample overlap by taking into account LDSC intercepts

(Figure 2.3b). In cases of complex and highly dimensional data

(e.g., large numbers of variables, or complex loading structure making

a factor model in GenomicSEM [Grotzinger et al., 2019] unfeasible),

Genomic PCA permits a focus on the first dimension of maximal varia-

tion without assuming that there is only one dimension (which is what

fitting a one-factor model would require). Genomic PCA is also com-

putationally simpler given a large number of considered ROIs. It is a

major advantage that no access to individual-level phenotype data is

needed to perform Genomic PCA, and we validated the approach by

demonstrating that GWAS summary statistics produced by Genomic

F IGURE 2 Genomic PCA pipeline. (1) Input data: The pipeline takes GWAS summary statistics as input. Here, we calculated GWAS summary
statistics for 83 cortical and subcortical grey-matter volumes, which were the input to the analyses presented throughout the manuscript.
(2) Calculate genetic correlation matrix: We calculated interregional genetic correlations based on LDSC as implemented in GenomicSEM
(Grotzinger et al., 2019). (3a) Perform PC Analysis: We performed Eigendecomposition of the genetic correlation matrix using the Eigenfunction
in R in order to extract PC1 loadings on the first PC underlying brain volumes for which we submitted GWAS summary statistics to the pipeline.
Here we obtained PC1 loadings for each of the 83 brain volumes, and an estimate of R2 quantifying how much genetic variance PC1 explained
across all input volumes. (3b) Calculate genome-wide SNP effects: To obtain genome-wide SNP-wise effects on the underlying genetic PC1, we
calculated each SNP effect as the average of all SNP effects contributed by the input volumes, weighted by respective volume-specific PC1
loadings. This created one set of GWAS summary statistics representative of genetic correlates of an underlying genetic PC1. Individual SNP
effects were computed with a modified function by Baselmans et al. (2019). We used the same procedure to also obtain PC1s underlying
different brain networks, for which we submitted fewer volumes as input.

4 FÜRTJES ET AL.
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PCA are very similar (rg = 0.99) to GWAS summary statistics obtained

from running GWAS analyses on a phenotypic PC1 (more details at

https://annafurtjes.github.io/genomicPCA/, and in Supplementary

Methods 2.5).

Using Genomic PCA, we performed theory-driven dimensionality

reduction by extracting genetic PC1s from covariance structures

across nine canonical brain networks (as well as the whole brain with

83 regions). That is, we submitted groups of brain volumes to Geno-

mic PCA that are thought to be part of canonical brain networks

(Supplementary Table 2 lists volumes allocated to nine overlapping

networks). Network definitions have been adopted from Madole et al.

(2021), where networks were aligned with the structural, functional

and lesion-based literature (e.g., Bressler & Menon, 2010; Jung &

Haier, 2007; Menon & Uddin, 2010).

F IGURE 3 Descriptive statistics. (a) Distribution of SNP-heritability estimates for 83 regional grey-matter volumes inferred through
univariate LDSC. (b) Distribution of genetic correlations among 83 regional grey-matter volumes inferred through between-volume LDSC.
(c) Distribution of phenotypic correlations among 83 regional grey-matter volumes inferred through Pearson's correlations. Raincloud plots were
created based on code adapted from Allen et al. (2019). Bottom row: Density distributions of PC1 loadings on the first PC underlying volumes in
(d) phenotypic and (e) genetic networks. Vertical lines indicate quantiles. Genetic PC1 loadings are plotted onto corresponding brain regions in
Supplementary Figure 24. (f) Variance explained by phenotypic and genetic first PC1 underlying volumes in each network.
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The remainder of the Methods outlines analyses of genetic PC1s

underlying multiple brain volumes derived with Genomic PCA and is

structured according to the four major sub-sections of the results:

1. First, we reported summary statistics (including volumetric PC1

loadings and variance explained by PC1; R2) describing the genetic

PC1s underlying the whole brain (83 regions), as well as nine

canonical brain networks including fewer regions (Section 3.1).

2. Second, we tested whether genetic interregional covariance is sim-

ilarly organised to phenotypic interregional covariance. To obtain

comparable indices of phenotypic covariance, we ran a standard

(phenotypic) PCA on a phenotypic correlation matrix obtained

from the same brain volume variables used to calculate GWAS.

Phenotypic PCA was performed with the Eigenfunction in R, which

is also used in Genomic PCA. We quantified linear associations

and the Tucker congruence coefficient (Lorenzo-Seva &

Berge, 2006) to contrast genetic and phenotypic interregional cor-

relations, as well as genetic and phenotypic PC1 loadings underly-

ing brain-wide volumes (Section 3.2).

3. Third, to quantify the genetic relationship between general dimen-

sions of brain morphometry and cognitive ability, we extracted a

general factor of cognitive ability in GenomicSEM (Grotzinger

et al., 2019) using factor analysis of seven cognitive traits as pub-

lished by de la Fuente et al. (2021). The seven cognitive traits were

Matrix Pattern Completion task for nonverbal reasoning, Memory—

Pairs Matching Test for memory, Reaction Time for perceptual

motor speed, Symbol Digit Substitution Task for information proces-

sing speed, Trail Making Test—B and Tower Rearranging Task for

executive functioning and Verbal Numerical Reasoning Test for ver-

bal and numeric problem solving, or fluid intelligence. The main

results of this section are genetic correlations between general

cognitive ability and genetic PC1s underlying the whole brain and

nine different brain networks (Section 3.3). Additionally, we report

genetic correlations with individual cognitive abilities, Qtrait ana-

lyses (Grotzinger et al., 2020) and we test whether the central

executive network is particularly relevant for cognitive ability

(Supplementary Methods 2.11).

4. Fourth, we tested for associations between general dimensions

underlying the whole brain and age-related indices to understand

whether generally more important regions for overall brain struc-

ture are also more susceptible to cognitive ageing (which would

support shared mechanisms). This fourth section is split into two

parts: First, we tested for a linear association between the genetic

PC1 loadings of all 83 volumes (onto a PC1 underlying the whole

brain) and a volume's cross-sectional association with age

(Section 3.4.1), which has previously been called its “age sensitiv-

ity” (Madole et al., 2021). This analysis was not repeated for smal-

ler subnetworks, because the low degree of statistical power did

not allow us to meaningfully estimate the correlation between the

vectors.

In a second, non-registered analysis, we quantified a genetic corre-

lation between a genetic PC1 underlying the whole brain and the

brain age gap (the gap between chronological and biological brain

age), for which we utilised GWAS summary statistics by Kaufmann

et al. (2019). This brain age gap GWAS was based on the differ-

ence between an individual's chronological age and age predictions

of how old (or young) an individual's brain appears from structural

MRI measures (Section 3.4.2). This analysis was only performed for

a genetic PC1 underlying the whole brain, but not PC1s underlying

different networks, because the different PC1s were so strongly

associated that they indexed practically the same polygenic signal

(as discussed in the last paragraph Section 3.1). More details on

Methods are in Supplementary Methods. Our analysis code is

displayed at https://annafurtjes.github.io/Genetic_networks_

project/.

3 | RESULTS

3.1 | Descriptive statistics of genomic PC1s
underlying whole brain and canonical brain networks

3.1.1 | Genetic PC1s underlying volumes across the
whole brain

In this section, we report variance explained (R2) by the first under-

lying volumetric PC (PC1) and corresponding PC1 loadings

obtained from Genomic PCA of the whole brain (83 regions),

as well as nine overlapping canonical brain networks. The PC1

underlying the whole brain explained 40% of the genetic variance

across 83 regional volumes—slightly larger than the 31% explained

by the first phenotypic whole-brain PC1 (Figure 3f). For compari-

son, the second genetic PC2 accounted for a fraction of the vari-

ance that the first PC1 explained (R2 = 6.7%), indicating that the

first genetic PC1 accounted for the majority of systematic variance

across structural networks. Genetic PC1 loadings onto the first PC1

underlying the whole brain ranged between 0.30 and 0.81

(mean = 0.62, SD = 0.13, median = 0.65; Figure 3e, Supplementary

Table 3).

3.1.2 | Genetic PC1s underlying volumes in
canonical networks

The first genetic PC1s underlying different brain networks accounted

for greater R2 than the genetic whole-brain PC1. R2 ranged from 65%

explained by the first genetic PC1 underlying the central executive

network, to 47% accounted for by the first genetic PC1 underlying

the temporo-amygdala-orbitofrontal network (Figure 3e). R2 was

larger for networks including fewer volumes, which tended to be more

homogeneous, as indicated by PC1 loadings (e.g., range 0.74–0.88 for

central executive, range 0.43–0.89 for sensorimotor). Parallel Analysis

confirmed that genetic PC1s underlying all brain networks explained

substantially more variance than expected by chance (Scree Plots Sup-

plementary Figures 11–20). Further simulations demonstrated that

our theoretical grouping of volumes into networks resulted in more

6 FÜRTJES ET AL.
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variance explained than expected by randomly grouping volumes

(Supplementary Table 5; Supplementary Methods 2.7).

To compare the polygenic signal captured by different brain net-

works, we calculated genetic correlations between them using Linkage

Disequilibrium Score Regression (LDSC; Bulik-Sullivan et al., 2015).

Those genetic correlations tended to be very high (mean rg between

networks 0.83, SD = 0.09; range = 0.63–0.97), suggesting different

network PC1s captured roughly the same polygenic signal. For exam-

ple, the central executive network was genetically associated with the

whole brain at rg = 0.91. That is, we obtained practically the same

polygenic signal when extracting a genetic PC1 from the whole brain

(83 volumes), as we obtained from extracting a genetic PC1 from

fewer volumes (e.g., 8 volumes in the central executive).

3.2 | Comparing genetic and phenotypic
interregional covariance

To quantify how indices of genetic and phenotypic interregional

covariance resemble each other, we calculated linear associations

between phenotypic and genetic between-volume correlations, as

well as linear associations and Tucker congruence coefficient between

phenotypic and genetic PC1 loadings onto an underlying whole-brain

PC1. The vectors of 3403 phenotypic and 3403 genetic interregional

correlations were strongly positively associated (r = 0.84; b = 0.60;

SE = 0.007, p < 2 � 10�16, R2 = 70%) (Figure 4a), indicating that vol-

umes that were strongly phenotypically correlated were also strongly

genetically correlated. Magnitudes of genetic correlations tended to

be slightly larger than phenotypic correlations (intercept = 0.06)

which is consistent with previous reports (Biton et al., 2020)

(Figure 5a).

The association between phenotypic PC1 loadings and genetic

PC1 loadings was large and significant (b = 0.65, SE = 0.06, p = 5.07

� 10�17, R2 = 58%, intercept = 0.15; Figure 4b). The Tucker

congruence coefficient was used to index the degree of similarity

between genetic and phenotypic PC1 loadings, taking into account

both their relative ordering and their absolute magnitudes (Lorenzo-

Seva & Berge, 2006). It revealed very high congruence between phe-

notypic and genetic PC1 loadings for the 83 volumes (Tucker coeffi-

cient = 0.99). These results illustrate a close correspondence and an

equivalent organisation of phenotypic and genetic dimensions of

shared morphometry; a finding that aligns with Cheverud's Conjecture

(Section 4.2).

3.3 | Genetic correlations between general
cognitive ability and general dimensions of human
brain morphometry

To quantify the genetic relationship between general dimensions

underlying brain morphometry with cognitive ability, we fitted a gen-

eral factor of cognitive ability (genetic g) indicated by seven cognitive

test GWAS in GenomicSEM (Grotzinger et al., 2019) and calculated its

genetic correlation with genetic PC1s underlying brain volumes in dif-

ferent brain networks (Figure 5). The whole brain and all network-

specific genetic PC1s were significantly genetically associated with

general cognitive ability. Correlation magnitudes ranged between

rg = 0.17–0.21 (Table 1). According to commonly-used rules of thumb

from Hu and Bentler (1998) (CFI >0.95, RMSEA <0.08), all models

showed good model fit (Supplementary Table 4).

We also report genetic correlations for three individual cognitive

traits, because the available GWAS data (de la Fuente et al., 2021) did

not warrant modelling separate cognitive domains. Each domain had a

maximum of two traits only (e.g., logical reasoning is assessed by both

Matrix Pattern Completion and Verbal Numerical Reasoning). Some

cognitive tests were impure and contained various cognitive compo-

nents (e.g., the Trail Making Test assesses executive and speed abili-

ties). To reduce the multiple testing burden, we pre-registered

F IGURE 4 Quantitative comparison of phenotypic and genetic interregional covariance. Figure (a) is contrasting 4303 between-volume
correlations where the phenotypic correlations were obtained from phenotypic brain volumes, and the genetic correlations were obtained from
LDSC of GWAS summary statistics of the same brain volumes. Figure (b) contrasts 83 phenotypic and genetic PC1 loadings onto an underlying
whole-brain PC1. Regions coloured in red are regions allocated to the central executive network, which tend to be both phenotypically and
genetically central to overall brain structure (i.e., high PC1 loadings).
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(https://osf.io/7n4qj) genetic correlations for three cognitive tests

that assess relatively separate cognitive abilities: Matrix Pattern Com-

pletion consistently yielded the strongest genetic correlations with

PCs underlying the brain networks (mean rg across different net-

works = 0.18). Genetic correlations for Symbol Digit Substitution Task

were slightly smaller (mean rg = 0.12), followed by Memory which had

the lowest average correlations (mean rg = 0.09).

The significant genetic correlations—between general cognitive

ability and genetic PC1s underlying different brain networks—seem to

act through a factor of general cognitive ability, rather than through

individual cognitive abilities, because individual cognitive traits had

high loadings on the genetic cognitive ability factor (median = 0.81,

range = 0.30–0.95; Supplementary Figure 22). Also, Qtrait heterogene-

ity analyses (Grotzinger et al., 2020) demonstrated that the general

cognitive ability factor accounted well for the patterns of association

between specific cognitive abilities and brain network genetic PC1s

(Supplementary Figure 23). That is, models allowing independent

associations for all individual cognitive traits did not yield better

model fit than models forcing any association to go through the gen-

eral cognitive ability factor (Δ χ2 � 0; df = 6; Supplementary Table 5).

Based on previous phenotypic findings that highlighted the

importance of the central executive network to general cognitive abil-

ity (Madole et al., 2021), we hypothesised to finding stronger genetic

correlations between general cognitive ability and volumetric PC1s

underlying the central executive network, relative to other brain net-

works (see pre-registered plan https://osf.io/7n4qj). In our genetic

analyses, there was no evidence for differences in correlation magni-

tudes between the central executive network and general cognitive

ability compared with other networks, even after accounting for net-

work sizes (Supplementary Figure 22; Supplementary Table 6).

TABLE 1 Genetic correlations (rg) between general cognitive ability and general dimensions of morphometry underlying the whole brain and
nine canonical brain networks.

Network Included volumes rg 95% CI p-value FDR q-value

Whole brain 83 0.21 0.13–0.29 1.00 � 10�7 3.00 � 10�7

Central executive 8 0.20 0.12–0.27 1.00 � 10�7 3.00 � 10�7

Cingulo-opercular 10 0.20 0.13–0.27 1.00 � 10�7 3.00 � 10�7

Default mode 16 0.19 0.12–0.26 2.00 � 10�7 3.00 � 10�7

Hippocampal-diencephalic 12 0.17 0.09–0.24 2.66 � 10�5 2.66 � 10�5

Multiple demand 12 0.19 0.12–0.27 7.00 � 10�7 9.00 � 10�7

P-FIT 36 0.20 0.12–0.27 2.00 � 10�7 3.00 � 10�7

Salience 10 0.19 0.12–0.26 3.00 � 10�7 4.00 � 10�7

Sensorimotor 12 0.19 0.11–0.27 1.20 � 10�7 1.30 � 10�6

Temporo-amygdala-orbitofrontal 30 0.20 0.12–0.27 2.00 � 10�7 4.00 � 10�7

Abbreviations: 95% CI, 95% confidence interval; FDR, false discovery rate; p-value, original p-value as indicated by the GenomicSEM model; q-value,

p-value corrected using 5% false discovery rate; rg, genetic correlation between genetic PC1s underlying nine canonical brain networks and a factor of

general cognitive ability modelled from seven cognitive traits; SE, standard error.

F IGURE 5 Genomic Structural Equation Model calculating genetic correlations between general cognitive ability and genetic PC1s. We
modelled a genetic g-factor of general cognitive ability in GenomicSEM (Grotzinger et al., 2019) using cognitive ability GWAS summary statistics
obtained from de la Fuente et al. (2021). The genetic correlation between genetic g and general morphometric dimensions underlying the whole
brain and nine canonical brain networks (modelled using Genomic PCA) are reported in Table 1. The seven cognitive traits and the networks are
inferred through LDSC. Matrix, matrix pattern completion task; Memory, memory—pairs matching test; RT, reaction time; Symbol Digit, symbol
digit substitution task; Trails-B, trail making test – B; Tower, tower rearranging task; VNR, verbal numerical reasoning test. Model fit: χ2 = 124.04,
df = 20, p-value = 2.1 � 10�20, AIC = 174.04, CFI = 0.97, SRMR = 0.079.
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Adjustments for network sizes were done by dividing effect sizes by

the number of volumes contained in a network (Supplementary

Methods 2.11).

3.4 | Associations between ageing and general
dimensions of brain morphometry

3.4.1 | Associations between genetic whole-brain
PC1 loadings and age sensitivity

Previous phenotypic work demonstrated that brain volumes more

central to overall brain structure—indexed by PC1 loadings onto a

phenotypic PC1 underlying 83 brain-wide volumes—were most sus-

ceptible to ageing. Ageing was represented by cross-sectional Pear-

son's volume-age correlations (Madole et al., 2021), which are

typically negative in adult populations. Here, we replicated this phe-

notypic association in a larger sample (r = �0.43, p = 4.4 � 10�5;

Figure 6a), and we found a significant, though smaller association

between genetic PC1 loadings and the same volume-age correlations

(r = �0.27, p = 0.012; Figure 6b). This suggests that the more geneti-

cally central a region was to the overall brain structure, the more sen-

sitive that region also was to age-related shrinkage. Note that this

association with age sensitivity emerged even though the PC1 load-

ings were extracted from brain volume GWAS residualised for age.

3.4.2 | Genetic correlation between whole-brain
genetic PC1 and brain age gap

Finally, we calculated a genetic correlation between a genetic PC1

underlying the whole brain and brain age, for which we used the brain

age GWAS by Kaufmann et al. (2019). The genetic correlation was

moderate and negative (rg = �0.34; SE = 0.06), suggesting that there

is a shared genetic basis for demonstrating younger brain age, and

having consistently larger volumes across the whole brain (ageing dis-

cussion in Section 4.3).

4 | DISCUSSION

Here, we have introduced a multivariate approach integrating covari-

ance across both multiple brain regions and the genome (Genomic

PCA) to help understand the links between the genetic architecture of

human brain morphometry and the network organisation of the brain.

In line with Cheverud's Conjecture (Cheverud, 1988), phenotypic and

genetic brain organisation seemed to operate on the same major

dimensions: phenotypic and genetic correlations were similar

(Section 4.1). There was moderate genetic overlap between cognitive

ability, ageing and global trends of morphometry underlying both the

whole brain and more parsimonious canonical brain networks

(Section 4.2 for cognitive ability, Section 4.3 for ageing). To comple-

ment theory-driven perspectives like in this study, our method Geno-

mic PCA may be used to identify regions most important to overall

brain structure (e.g., volumes with the largest PC loadings) to be

prioritised in future investigations of the relationship between the

brain and cognitive ability.

4.1 | Analogous phenotypic and genetic
interregional covariance across the brain

To our knowledge, this is the first genetically-informed study that cor-

roborates the brain organisation observed in phenotypic studies - we

demonstrated analogous interregional covariance across the whole

brain derived from both phenotypic and genetic indices (i.e., highly

corresponding interregional correlations and whole-brain PC1 load-

ings). Analogous to phenotypic findings in Madole et al. (2021), we

F IGURE 6 Association between (a) phenotypic and (b) genetic PC1 loadings of all 83 volumes (onto a PC1 underlying the whole brain) and a
volumes' cross-sectional association with age (Section 3.4.1), which is known as “age sensitivity” (Madole et al., 2021). Volumes coloured in red
are regions thought to reside in the central executive network, which tended to be both phenotypically and genetically central to overall brain
structure (high PC1 loadings), and they tended to be more susceptible towards age (large volume-age correlation).
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found that some volumes were genetically more important for overall

brain structure than others, indicated by high loadings onto the first

PC underlying the whole brain. For example, frontal and parietal vol-

umes theorised to be part of the central executive network, had con-

sistently high loadings, indicating their overall importance for overall

brain structure.

The close phenotypic and genetic correspondence in interregional

covariance means that inferences from genetic to phenotypic dimen-

sions are viable. This is in line with previous studies comparing pheno-

typic and genetic correlations between morphometric traits (Biton

et al., 2020; Sodini et al., 2018). According to Cheverud's Conjecture,

this indicates that genetics of brain organisation operate on the same

dimensions as are evident phenotypically, and likely index the same

developmental processes. More genetically-informed studies of brain

organisation are needed to map those major dimensions onto the rele-

vant biological pathways and mechanisms.

We suggest a similar organisation of phenotypic and genetic brain

architecture is supporting evidence for the neurobiological validity of

canonical brain networks. The fact that our theoretical grouping of

volumes into brain networks—informed by commonly-referenced

studies of structural, functional and lesion-based studies (Bressler &

Menon, 2010; Jung & Haier, 2007; Madole et al., 2021; Menon &

Uddin, 2010)—yielded networks that explained more variance than

expected by randomly grouping volumes into networks, provides

some evidence for the ontological reality of those networks.

However, it was surprising to find a lack of specificity between

different networks at the level of their broad associated polygenic sig-

nal, which was quantified through very high genetic correlations

between genetic PC1s underlying brain volumes in different canonical

networks (range rg = 0.63–0.97). This suggests that our Genomic PCA

analyses captured general genes linked with global brain-wide fea-

tures of morphometric trends, which are practically the same across

canonical networks and the whole brain. Future studies wishing to

index the genetic correlates of these global features may focus on

more parsimonious and computationally more efficient brain net-

works, including only few volumes most representative of overall

brain structure (e.g., 8 regions in central executive network) rather

than modelling the whole brain.

4.2 | Genetic correlations between general
cognitive ability and general morphometry underlying
canonical brain networks

Using a multivariate definition of general cognitive ability, we demon-

strated PC1s underlying all nine brain networks and the whole brain,

were genetically associated with cognitive ability at small-to-moderate

magnitudes (rg = 0.17–0.21). The effect sizes were about the same

magnitude as Jansen et al. (2020) found for a genetic correlation

between total brain volume and cognitive ability (rg = 0.24); this was

even when some of our models considered only few brain regions

(i.e., central executive included only 8 volumes and still yielded magni-

tudes as large as total brain size). Furthermore, our cogitive ability -

genetic network correlations were numerically larger than genetic cor-

relations obtained from individual brain volumes (range rg = 0.07–

0.13 in Biton et al., 2020). Extracting PC1s seems to distil less noisy

genetic variance, which is more robustly relevant to cognitive ability.

This should encourage future studies to model general trends of mor-

phometry underlying multiple brain regions, instead of considering

individual regions only.

In contrast to phenotypic findings (Madole et al., 2021), there was

no evidence that genetic correlates underlying morphometry in the

central executive network were any more strongly associated with

cognitive ability than the other brain networks. This is compatible

with the lack of specificity between different brain networks at the

level of their associated polygenic signal (discussed in Section 4.1):

each network made a similar prediction of cognitive ability at the

genetic level. The fact that a disproportionate role of the central exec-

utive network did not replicate in our genetically-informed design

(even when accounting for network size), may suggest that genetics

are more likely to predispose towards more general genes of global

brain features shared across the brain. Tentatively, this would also

suggest that instead of genes, environmental processes might drive

phenotypically observed specialisations of brain networks, causing dif-

ferent morphometric structures to matter more (or less) for optimal

cognitive performance.

4.3 | Genetic associations between ageing and
general dimensions of brain morphometry

We demonstrated that regions genetically more important to overall

brain structure (i.e., large whole-brain PC1 loadings) also tended to be

more sensitive towards age-related shrinkage (i.e., cross-sectional

volume-age correlations; r = �0.27). This may be due to more strenu-

ous metabolic burden (or other functional stresses) on regions central

to the overall structure, possibly through more heavily-demanding

cognitive processes. This could alter disproportionately the speed at

which some regions atrophy with advancing age. Whereas this was

previously described phenotypically, to our knowledge we present the

first genetically-informed study to show this relation. However, we

suggest it requires triangulation either by future longitudinal ageing

studies, or cross-sectional studies modelling within-person atrophy by

incorporating information on prior brain size (e.g., intracranial volume

as a proxy for size at younger age).

We also found a substantial genetic correlation of general trends

of morphometry across the whole brain with the brain age gap

(rg = �0.34), suggesting there is a shared genetic basis to brain age

and general trends of brain organisation, even after residualising brain

volume GWAS for age. The genetics associated with younger-

appearing brains may act through overlapping biological processes

that also underlie mechanisms of well-integrated global brain morpho-

metric features. That is, patterns of brain structural ageing may not

just capture how quickly an individual's regional volumes decline com-

pared to their peers, but rather general healthy morphometry across

the brain. This would be compatible with phenotypic research
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showing that younger brain age predicts better physical fitness, better

fluid intelligence and longer lifespan (Cole et al., 2018). Healthy brain

morphometry could vary between people for many non-age-related

reasons; our findings suggest it may, at least partly, be due to genetic

predisposition, possibly towards better-integrated, more resilient brain

biology.

4.4 | Limitations

Analyses in this study come with limitations. Genetic correlations are

representative of genetic associations across the entire genome, but

do not give direct insight into specific DNA regions of sharing. As

genetic correlations were calculated using LDSC, the limitations that

apply to LDSC methodology apply to our study (discussion in Supple-

mentary Note; Appendix S1). We conclude based on heritability esti-

mates, indexing signal-to-noise ratios in GWAS, that there was

sufficient polygenic signal to warrant LDSC analysis (heritability ran-

ged 7–42%). LDSC intercepts were perfectly associated with pheno-

typic correlations (R2 = 0.99), indicating that the analyses successfully

separated confounding signals (including environmental factors) from

the estimates of genetic correlations.

This study was conducted in the UK Biobank sample, which is not

fully representative of the general population of the United Kingdom:

its participants are more wealthy, healthy and educated than average

(Fry et al., 2017). Cohort effects may affect the degree to which dif-

ferential brain-regional susceptibility to ageing can be inferred from

cross-sectional data. It remains to be tested whether our results can

be extrapolated to socio-economically poorer subpopulations, or out-

side European ancestry. Results were also dependent on the choice of

brain parcellation to divide the cortex into separate regions.

4.5 | Conclusion

To study the neurobiological bases of adult cognitive ageing, we intro-

duced a multivariate framework to integrate covariance across multi-

ple brain regions and the genome (Genomic PCA), which allowed

modelling of general dimensions underlying brain-wide morphometry.

In line with Cheverud's Conjecture, phenotypic and genetic brain

organisation seemed to operate on the same major dimensions and

moderate genetic correlations supported that genes underlying gen-

eral dimensions of brain morphometry are implicated in cognitive age-

ing. Genetically more important regions to overall brain structure

tended to be more susceptible towards age-related shrinkage. How-

ever, instead of uncovering localised brain network-specific genetic

correlates, we only found evidence for general genetic correlates of

brain-wide morphometric features. This may imply that environmen-

tal, or otherwise non-genetic, processes are more likely than genes to

drive different morphometric structures to matter more (or less) for

better cognitive performance. The evidence presented here brings us

closer to characterising genetic etiology and robust neurobiological

correlates of cognitive ageing, and provides a foundation for future

investigations ultimately working on interventions for cognitive

decline.
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