717 research outputs found

    Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment

    Get PDF
    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution

    Reversals in nature and the nature of reversals

    Get PDF
    The asymmetric shape of reversals of the Earth's magnetic field indicates a possible connection with relaxation oscillations as they were early discussed by van der Pol. A simple mean-field dynamo model with a spherically symmetric α\alpha coefficient is analysed with view on this similarity, and a comparison of the time series and the phase space trajectories with those of paleomagnetic measurements is carried out. For highly supercritical dynamos a very good agreement with the data is achieved. Deviations of numerical reversal sequences from Poisson statistics are analysed and compared with paleomagnetic data. The role of the inner core is discussed in a spectral theoretical context and arguments and numerical evidence is compiled that the growth of the inner core might be important for the long term changes of the reversal rate and the occurrence of superchrons.Comment: 24 pages, 12 figure

    Study protocol: developing a decision system for inclusive housing: applying a systematic, mixed-method quasi-experimental design

    Get PDF
    Background Identifying the housing preferences of people with complex disabilities is a much needed, but under-developed area of practice and scholarship. Despite the recognition that housing is a social determinant of health and quality of life, there is an absence of empirical methodologies that can practically and systematically involve consumers in this complex service delivery and housing design market. A rigorous process for making effective and consistent development decisions is needed to ensure resources are used effectively and the needs of consumers with complex disability are properly met. Methods/Design This 3-year project aims to identify how the public and private housing market in Australia can better respond to the needs of people with complex disabilities whilst simultaneously achieving key corporate objectives. First, using the Customer Relationship Management framework, qualitative (Nominal Group Technique) and quantitative (Discrete Choice Experiment) methods will be used to quantify the housing preferences of consumers and their carers. A systematic mixed-method, quasi-experimental design will then be used to quantify the development priorities of other key stakeholders (e.g., architects, developers, Government housing services etc.) in relation to inclusive housing for people with complex disabilities. Stakeholders randomly assigned to Group 1 (experimental group) will participate in a series of focus groups employing Analytical Hierarchical Process (AHP) methodology. Stakeholders randomly assigned to Group 2 (control group) will participate in focus groups employing existing decision making processes to inclusive housing development (e.g., Risk, Opportunity, Cost, Benefit considerations). Using comparative stakeholder analysis, this research design will enable the AHP methodology (a proposed tool to guide inclusive housing development decisions) to be tested. Discussion It is anticipated that the findings of this study will enable stakeholders to incorporate consumer housing preferences into commercial decisions. Housing designers and developers will benefit from the creation of a parsimonious set of consumer-led housing preferences by which to make informed investments in future housing and contribute to future housing policy. The research design has not been applied in the Australian research context or elsewhere, and will provide a much needed blueprint for market investment to develop viable, consumer directed inclusive housing options for people with complex disability

    Revisiting consistency with random utility maximisation: theory and implications for practical work

    Get PDF
    While the paradigm of utility maximisation has formed the basis of the majority of applications in discrete choice modelling for over 40 years, its core assumptions have been questioned by work in both behavioural economics and mathematical psychology as well as more recently by developments in the RUM-oriented choice modelling community. This paper reviews the basic properties with a view to explaining the historical pre-eminence of utility maximisation and addresses the question of what departures from the paradigm may be necessary or wise in order to accommodate richer behavioural patterns. We find that many, though not all, of the behavioural traits discussed in the literature can be approximated sufficiently closely by a random utility framework, allowing analysts to retain the many advantages that such an approach possesses

    Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: evidence of causal association from population studies

    Get PDF
    <p>Background: Genetic and epidemiological evidence suggests an inverse association between B-type natriuretic peptide (BNP) levels in blood and risk of type 2 diabetes (T2D), but the prospective association of BNP with T2D is uncertain, and it is unclear whether the association is confounded.</p> <p>Methods and Findings: We analysed the association between levels of the N-terminal fragment of pro-BNP (NT-pro-BNP) in blood and risk of incident T2D in a prospective case-cohort study and genotyped the variant rs198389 within the BNP locus in three T2D case-control studies. We combined our results with existing data in a meta-analysis of 11 case-control studies. Using a Mendelian randomization approach, we compared the observed association between rs198389 and T2D to that expected from the NT-pro-BNP level to T2D association and the NT-pro-BNP difference per C allele of rs198389. In participants of our case-cohort study who were free of T2D and cardiovascular disease at baseline, we observed a 21% (95% CI 3%-36%) decreased risk of incident T2D per one standard deviation (SD) higher log-transformed NT-pro-BNP levels in analysis adjusted for age, sex, body mass index, systolic blood pressure, smoking, family history of T2D, history of hypertension, and levels of triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. The association between rs198389 and T2D observed in case-control studies (odds ratio = 0.94 per C allele, 95% CI 0.91-0.97) was similar to that expected (0.96, 0.93-0.98) based on the pooled estimate for the log-NT-pro-BNP level to T2D association derived from a meta-analysis of our study and published data (hazard ratio = 0.82 per SD, 0.74-0.90) and the difference in NT-pro-BNP levels (0.22 SD, 0.15-0.29) per C allele of rs198389. No significant associations were observed between the rs198389 genotype and potential confounders.</p> <p>Conclusions: Our results provide evidence for a potential causal role of the BNP system in the aetiology of T2D. Further studies are needed to investigate the mechanisms underlying this association and possibilities for preventive interventions.</p&gt

    Possible Role of Horizontal Gene Transfer in the Colonization of Sea Ice by Algae

    Get PDF
    Diatoms and other algae not only survive, but thrive in sea ice. Among sea ice diatoms, all species examined so far produce ice-binding proteins (IBPs), whereas no such proteins are found in non-ice-associated diatoms, which strongly suggests that IBPs are essential for survival in ice. The restricted occurrence also raises the question of how the IBP genes were acquired. Proteins with similar sequences and ice-binding activities are produced by ice-associated bacteria, and so it has previously been speculated that the genes were acquired by horizontal transfer (HGT) from bacteria. Here we report several new IBP sequences from three types of ice algae, which together with previously determined sequences reveal a phylogeny that is completely incongruent with algal phylogeny, and that can be most easily explained by HGT. HGT is also supported by the finding that the closest matches to the algal IBP genes are all bacterial genes and that the algal IBP genes lack introns. We also describe a highly freeze-tolerant bacterium from the bottom layer of Antarctic sea ice that produces an IBP with 47% amino acid identity to a diatom IBP from the same layer, demonstrating at least an opportunity for gene transfer. Together, these results suggest that the success of diatoms and other algae in sea ice can be at least partly attributed to their acquisition of prokaryotic IBP genes

    Quantum physics meets biology

    Full text link
    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa

    Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish <it>Astatotilapia burtoni</it>, and tested whether these receptor levels were correlated with circulating steroid concentrations.</p> <p>Results</p> <p>We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes.</p> <p>Conclusions</p> <p>This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral auditory system of any single vertebrate. Our data suggest that changes in steroid receptor mRNA expression in the inner ear could be a regulatory mechanism for physiological state-dependent auditory plasticity across vertebrates.</p

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page
    corecore