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                                                               Abstract 

The complete genomes of living organisms have provided much information on their 

phylogenetic relationships.  Similarly, the complete genomes of the chloroplast have 

helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this 

paper we use these sequences to test a compositional approach without sequence 

alignment for phylogenetic analysis of complete genomes based on correlation analysis.  

All protein sequences from 54 complete prokaryote and eukaryote genomes were 

analyzed first. Then all protein sequences from 21 complete chloroplast genomes were 

analyzed. Our distance-based phylogenic tree of the 54 prokaryotes and eukaryotes 

agrees with the biologists’ “tree of life” based on 16S rRNA comparison in a 

predominantly majority of basic branchings and most lower taxa.  Our phylogenetic 

analysis also shows that the chloroplast genomes are separated to two major clades 

corresponding to chlorophytes (green plants) s.l. and rhodophytes (red algae) s.l.  The 

interrelationships among the chloroplasts are largely in agreement with the current 

understanding on chloroplast evolution.  Thus this study establishes the value of our 

simple compositional approach of phylogenetic analysis in elucidating the evolutionary 

relationships among genomes.  
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Introduction 
 

            In our understanding of the classification of the living world as a whole, the most 

important advance was made by Chatton (1937), whose classification is that there are two major 

groups of organisms, the prokaryotes (bacteria) and the eukaryotes (organisms with nucleated 

cells). Then the universal tree of life based on the 16S-like rRNA genes given by Woese and 

colleagues (Woese 1987; Woese et al. 1990) led to the proposal of three primary domains 

(Eukarya, Bacteria, and Archaea). Although the archaebacterial domain is accepted by biologists, 

its phylogenetic status is still a matter of controversy (Gupta 1998; Mayr 1998).  Analysis of 

some genes, particularly those encoding metabolic enzymes, gives different phylogenies of the 

same organisms or even fail to support the three-domain classification of living organisms 

(Brown and Doolittle 1997; Doolittle 1998; Gupta 1998).  

 

           It is generally accepted that genome sequences are excellent tools for studying evolution 

(Eisen and Fraser 2003). In building the tree of life, analysis of whole genomes has begun to 

supplement, and in some cases to improve upon, studies previously done with one or a few genes 

(Eisen and Fraser 2003). The availability of complete genomes allows the reconstruction of 

organismal phylogeny, taking into account the genome content, for example, based on the 

rearrangement of gene order (Sankoff et al. 1992), the presence and absence of protein-coding 

gene families (Fitz-Gibbon and House 1999), gene content and overall similarity (Tekaia et al. 

1999), and occurrence of folds and orthologs (Lin and Gerstein 2000). All these above 

approaches depend on alignment of homologous sequences, and it is apparent that much 

information (such as gene rearrangement and insertions/deletions) in these data sets is lost after 

sequence alignment, let alone the intrinsic problems of alignment algorithms (Li et al. 2001; 

Stuart et al. 2002).  There have been a number of recent attempts to develop methodologies that 

do not require sequence alignment for deriving species phylogeny based on overall similarities of 

the complete genomes (e.g., Li et al. 2001; Yu and Jiang 2001; Yu et al 2003a, 2003b, 2004; 

Edwards et al. 2002; Stuart et al. 2002). 

 

           By overcoming the problem of noise and bias in the protein sequences through the use of 

better models, whole-genome trees have now largely converged to the rRNA-sequence tree 

(Charlebois et al. 2003). Qi et al. (2004) have developed a simple correlation analysis of complete 

genome sequences based on compositional vectors without the need of sequence alignment. The 

compositional vectors calculated based on frequency of amino acid strings are converted to 
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distance values for all taxa, and the phylogenetic relationships are inferred from the distance 

matrix using conventional tree-building methods. An analysis based on this method using 109 

organisms (prokaryotes and eukaryotes) yields a tree separating the three domains of life, 

Archaea, Eubacteria and Eukarya, with the relationships among the taxa correlating with those 

based on traditional analyses (Qi et al. 2004). A correlation analysis based on a different 

transformation of compositional vectors was also reported by Stuart et al. (2002) who 

demonstrated the applicability of the method in revealing phylogeny using vertebrate 

mitochondrial genomes.  

 

Chloroplast DNA is a primary source of molecular variations for phylogenetic analysis of 

photosynthetic eukaryotes.  During the past decade the availability of complete chloroplast 

genome sequences has provided a wealth of information to elucidate the phylogeny of 

photosynthetic eukaryotes at the deep levels of evolution. There have been many phylogenetic 

analyses based on comparison of sequences of multiple protein-coding genes in chloroplast 

genomes (e.g., Martin et al. 1998, 2002; Turmel et al. 1999, 2002; Adachi et al. 2000; Lemieux et 

al. 2000; De Las Rivas et al. 2002).   The approach proposed by Qi et al. (2004) has also been 

adopted to analyze the complete chloroplast genomes (Chu et al., 2004) and found to reveal a 

phylogeny of this organelle that is largely consistent with the phylogeny of the photosynthetic 

eukaryotes based on traditional analyses, thus demonstrating the value of this methodology in 

analyzing genomes of a smaller size.  

 

In the approach proposed by Qi et al. (2004), a key step is to substract the noise 

background in the composition vector of the protein sequences from complete genomes  through 

a Markov model. In this study, we intend to improve the approach proposed by Qi et al. (2004). 

We propose to model the noise background in the composition vector through the relationship 

between word and its two sub-words in theory of symbolic dynamics. This approach is easier to  

understand and faster than the approach by Qi et al. (2004). We apply our new approach to the 

phylogenetic analyses of 54 organisms (mainly prokaryotes), and the same chloroplast genomes 

used in our previous paper (Chu et al. 2004). The results are as good as those previously reported 

in Qi et al. (2004) and Chu et al. (2004).  

 

 

 

 



 4

 

Materials and Methods 

 

Genome Data Sets 

 

       We retrieve the complete genomes from NCBI database (ftp://ncbi.nlm.nih.gov 

/genbank/genomes/). 

 

       We selected 54 organisms for prokaryote phylogenetic analysis. These include ten Archaea:  

Archaeoglobus fulgidus (Aful), Pyrococcus abyssi (Paby),  Pyrococcus horikoshii (Phor),  

Methanococcus jannaschii (Mjan),  Halobacterium sp. NRC-1 (Hbsp),  Thermoplasma 

acidophilum (Taci),  Thermoplasma volcanium (Tvol),  Methanobacterium thermoautotrophicum 

(Mthe), Aeropyrum pernix (Aero) and  Sulfolobus solfataricus (Ssol); three Gram-positive 

Eubacteria (high G+C):   Mycobacterium tuberculosis H37Rv (MtubH),  Mycobacterium 

tuberculosis CDC1551 (MtubC) and  Mycobacterium leprae (Mlep); twelve Gram-positive 

Eubacteria (low G+C):  Mycoplasma pneumoniae (Mpne),  Mycoplasma genitalium (Mgen),  

Mycoplasma pulmonis (Mpul),  Ureaplasma urealyticum (Uure),  Bacillus subtilis (Bsub),  

Bacillus halodurans (Bhal),  Lactococcus lactis (Llac),  Streptococcus pyogenes (Spyo), 

Streptococcus pneumoniae (Spne),  Staphylococcus aureus N315 (SaurN),  Staphylococcus 

aureus Mu50 (SaurM), and  Clostridium acetobutylicum ATCC824 (CaceA). The others are 

Gram-negative Eubacteria, which consist of two hyperthermophilic bacteria:  Aquifex 

aeolicus  (Aqua) and  Thermotoga maritima (Tmar); four Chlamydia:  Chlamydia trachomatis 

(Ctra),  Chlamydia pneumoniae CWL029 (Cpne),  Chlamydia pneumoniae AR39 (CpneA) and  

Chlamydia pneumoniae J138 (CpneJ); two Cyanobacteria:  Synechocystis sp. PCC6803 (Syne) 

and  Nostoc sp. PCC6803 (Nost); two Spirochaetes:  Borrelia burgdorferi (Bbur) and  

Treponema pallidum (Tpal); and sixteen Proteobacteria. The sixteen Proteobacteria are divided 

into four subdivisions, which are alpha subdivision:  Mesorhizobium loti  (Mlot),  Sinorhizobium 

meliloti (smel),  Caulobacter crescentus (Ccre) and  Rickettsia prowazekii (Rpro); beta 

subdivision:  Neisseria meningitidis MC58 (NmenM) and  Neisseria meningitidis Z2491 

(NmenZ); gamma subdivision:  Escherichia coli K-12 MG1655 (EcolK),  Escherichia coli 

O157:H7 EDL933 (EcolO),  Haemophilus influenzae (Hinf),  Xylella fastidiosa (Xfas),  

Pseudomonas aeruginosa (Paer),  Pasteurella multocida (Pmul) and  Buchnera sp. APS (Buch); 

and epsilon subdivision:  Helicobacter pylori J99 (HpylJ),  Helicobacter pylori 26695 (Hpyl) 

and  Campylobacter jejuni (Cjej). We also included in the analysis three eukaryotes: the yeast  
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Saccharomyces cerevisiae (yeast), the nematode Caenorhabdites elegans (chromosome I-V, X) 

(Worm), and the flowering plant  Arabidopsis thaliana (Atha). The words in the brackets are the 

abbreviations of the name of these organisms used in our phylogenetic tree. 

 

      Complete sequences of 21 chloroplast genomes (Cyanophora paradoxa, Cyanidium 

caldarium, Porphyra purpurea, Guillardia theta, Odontella sinensis, Euglena gracilis, Chlorella 

vulgaris, Nephroselmis olivacea, Mesostigma viride, Chaetosphaeridium globosum, Marchantia 

polymorpha, Psilotum nudum, Pinus thunbergii, Oenothera elata, Lotus japonicus, Spinacia 

oleracea, Nicotiana tabacum, Arabidopsis thaliana, Oryza sativa, Triticum aestivu and Zea mays) 

are selected for our phylogenetic analysis on chloroplast, using the cyanobacterium Synechocystis 

as the outgroup taxon as in many previous analyses (e.g., Turemel et al., 1999;  Martin et al., 

2002). 

 

Composition Vectors and Distance Matrix 

 

We base our analysis on all protein sequences including hypothetical reading frames from 

each genome, regarding sequences of the 20 amino acids as symbolic sequences.  In such a 

sequence of length L , there are a total of N = 20K possible types of strings of length K.  We use a 

window of length K and slide it through the sequences by shifting one position at a time to 

determine the frequencies of each of the N  kinds of strings in each genome. A protein sequence 

is excluded if its length is shorter than K.  The observed frequency )...( 21 Kp ααα  of a K -string 

Kααα ...21  is defined as )1/()...()...( 2121 +−= KLnp KK αααααα , where )...( 21 Kn ααα is the 

number of times that Kααα ...21 appears in this sequence. Denoting by m the number of protein 

sequences from each complete genome, the observed frequency of a K -string Kααα ...21  is 

defined as ∑∑ ==
+−m

j j

m

j Kj KLn
11 21 ))1(/())...(( ααα ; here )...( 21 Kjn ααα means the number of 

times that Kααα ...21 appears in the jth protein sequence and jL  the length of the jth protein 

sequence in this complete genome.  

 

The phylogenetic signal in the protein sequences is too often obscured by noise and bias 

(Charlebois et al. 2003). There is always some randomness in the composition of protein 

sequences, revealed by statistical properties of protein sequences at single amino acid or 

oligopeptide level (see Weiss et al. 2000 for a recent discussion on this point).  In order to 
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highlight the selective diversification of sequence composition, we subtract the random 

background (noise and bias) from the simple counting results.  In the present study, we consider 

an idea from the theory of dynamical language that a K -string Kααα ...21 is possibly constructed 

by adding a letter Kα  to the end of )1( −K -string 121 ... −Kααα or a letter 1α  to the beginning of 

)1( −K -string Kααα ...32 . Suppose that we have performed direct counting for all strings of 

length )1( −K  and the 20 kinds of letters, the expected frequency of appearance of K -strings is 

predicted by  

 

2

)...()()()...(
)...( 321121

21
KKK

K

pppp
q

ααααααααααα += −
 

 

where q denotes the predicted frequency. [In the previous papers of our group (Qi et al. 2004; 

Chu et al. 2004), we use Markov model to characterize the predictor, in which we need to know 

the information of the )1( −K -strings and )2( −K -strings.] We then subtract the above random 

background (noise and bias) before performing a cross-correlation analysis (similar to removing a 

time-varying mean in time series before computing the cross-correlation of two time series). We 

then calculate a new measure X of the shaping role of selective evolution as 

 





=
≠

=
.0)...(,1

0)...(),...(/)...(
)...(

21

212121
21

K

KKK
K qif

qifqp
X

ααα
ααααααααα

ααα  

 

The transformation qpX /=  has the desired effect of subtraction of random background (noise 

and bias) in p and rendering it a stationary time series suitable for subsequent cross-correlation 

analysis. 

For all possible K -strings Kααα ...21 , we use )...( 21 KX ααα  as components to form a 

composition vector for a genome. To further simplify the notation, we use iX  for the i -th 

component corresponding to the string type i , i  = 1,…, N (the N strings are arranged in a fixed 

order as the alphabetical order). Hence we construct a composition vector ),...,,( 21 NXXXX =  

for genome X , and likewise ),...,,( 21 NYYYY =  for genome Y .   

If we view the N components in vectors X and Y  as samples of two zero-mean random 

variables respectively, the sample correlation ),( YXC  between any two genomes X  and Y  is 
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defined in the usual way in probability theory as 
2

1

1

2

1

2

1
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i
i

N

i
i
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i
ii

YX

YX
YXC .  The distance 

),( YXD  between the two genomes is then defined by the equation 

2/)),(1(),( YXCYXD −= .  A distance matrix for all the genomes under study is then 

generated for construction of phylogenetic trees.   

The vector p that we described is identical to the peptide frequency vector used by Stuart 

et al. (2002). We have pointed out in our previous paper (Chu et al. 2004) that their method of 

structure removal is entirely different. Starting from the vector p, these authors used Singular 

Value Decomposition (SVD) and then Dimension Reduction on their constructed matrix. The 

correlation distance is then used to construct the tree. In the method used in Qi et al. (2004) and 

Chu et al. (2004), we subtract random background through a Markov model for q and X. The 

SVD step is much more complicated than the method proposed by Qi et al. (2004) in both 

theoretical and practical considerations. In the present study, we subtract the random background 

through a dynamic language formula. We only need the information for all strings of length 

)1( −K  and the 20 kinds of letters instead of that for all strings of length )1( −K  and )2( −K  

which is needed in the Markov model. In particular, our new method is much faster than the one 

used in Qi et al. (2004) and Chu et al. (2004) when K is relatively large. 

 

Tree Construction 

 

Different distance methods, including Fitch-Margoliash (Fitch and Margoliash 1967), 

neighbour-joining (Saitou and Nei 1987) and minimum evolution (Saitou and Imanishi 1989), are 

used to construct the phylogenetic trees. A previous study on prokaryotes shows that the topology 

of the trees stabilized for K ≥ 5 (Qi et al. 2004).  In the present study, we used K = 4 or 5 and the 

topologies of the resulting trees are similar. Here we present the results based on K= 5.  The 

distance matrix generated from this analysis can be provideded via email z.yu@qut.edu.au.  
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Results and Discussion  

 

The topologies of the trees generated by distance methods including Fitch-Margoliash 

(FM), neighbour-joining (NJ) and minimum evolution (ME) are identical or very similar.  

 

Fig. 1 shows the tree based on the NJ analysis for the selected 54 organisms.  The ten 

Archaea group together as a domain. The three eukaryotes also cluster  together as a domain. And 

all Eubacteria fall into another domain. So the division of life into three main domains 

Eubacteria, Archaebacteria and Eukarya is a clean and prominent feature. No mixing among 

members of different domains appears in the tree.  At the interspecific level, different prokaryotes 

in the same group (Spirochete, Cyanobacteria, Chlamydia, Gram-positive bacteria (High G+C), 

Gram-positive bacteria (Low G+C), Hyperthermophilic bacteria and Proteobacteria) all group 

together. Our phylogenetic tree of organisms supports the 16S-like rRNA tree of life in its broad 

division into three domains and the grouping of the various prokaryotes.. So after subtracting the 

noise and bias in the protein sequences as described in our method, the whole-genome tree 

converges to the rRNA-sequence tree as asserted in Charlebois et al. (2003).  

 

In the phylogenetic analyses based on a few genes, the tendency of the two 

hyperthermophilic bacteria, Aquae and Thema, to get into Archaea, have intensified the debate on 

whether there has been wide-spread lateral or horizontal gene transfers among species (Doolittle 

1999; Ragan 2001; Martin and Herrmann 1998). It is a consensus now that one should not equate 

a tree inferred from a single or a few genes to the organismic tree of life (Qi et al. 2004; Pennisi 

1999). Analysis of complete genomes suggest that lateral gene transfer  has been rare over the 

course of evolution and it has not distorted the structure of the tree (Eisen and Fraser 2003). In 

our tree (Fig. 1) the two hyperthermophlic bacteria group together and stay in the domain of 

eubacteria. This result is same as in Qi et al. (2004) and also supports the point of view in Eisen 

and Fraser (2003). 

 

 

        Fig. 2 shows the trees based on NJ analysis for the chloroplasts.  The chloroplasts are 

separated into two major clades, one of which corresponds to the green plants sensu lato, or 

chlorophytes s.l. (Palmer and Delwiche 1998), which include all taxa with a chlorophyte 

chloroplast, both primary and secondary endosymbioses in origin, and the other comprising the 

glaucophyte Cyanophora and members of rhodophytes s.l., which refers to rhodophytes (or red 
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algae, Cyanidium and Porphyra in the tree) and their secondary symbiotic derivatives (the 

heterokont Odontella and the cryotphyte Guillarida).   The close relationship between 

Cyanophora and rhodophytes s.l. agrees with some of the previous analyses (Stirewalt et al. 

1995; De Las Rivas et al. 2002), although most recent studies suggest that the glaucophyte 

represents the earliest branch in chloroplast evolution with the green plants s.l. and rhodophytes 

s.l. as sister taxa (Martin et al. 1998, 2002; Adachi et al. 2000; Moreira et al. 2000). In 

chlorophyte s.l., the green algae (i.e., Chlorella, Mesostigma, and Nephroselmis) and Euglena are 

basal in position and the seed plants cluster together as a derived group, although the relationships 

among the other taxa (i.e., Marchantia, Psilotum, and Chaetosphaeridium) are somewhat 

different from our traditional understanding, probably due to limited taxon sampling in these 

primitive green plants.  To sum up, our simple correlation analysis on the complete chloroplast 

genomes has yielded a tree that is in good agreement with our current knowledge on the 

phylogenetic relationships of different groups of photosynthetic eukaryotes in general (see Palmer 

and Delwiche 1998, McFadden 2001a,b for reviews).   

 

Our approach circumvents the ambiguity in the selection of genes from complete 

genomes for phylogenetic reconstruction, and is also faster than the traditional approaches of 

phylogenetic analysis, particularly when dealing with a large number of genomes.  Moreover, 

since multiple sequence alignment is not necessary, the intrinsic problems associated with this 

complex procedure can be avoided.  In contrast to a recent similar analysis on mitochondrial 

genomes based on compositional vector (Stuart et al. 2002), our approach does not require prior 

information on gene families in the genome and is also simpler in the method used for subtraction 

of random background from the data (see Materials and Methods).  The present method improves 

on the method used in the previous papers of our group (Qi et al. 2004; Chu et al. 2004).  In the 

present method, we only need the information for all strings of length )1( −K  and the 20 kinds 

of letters instead of that for all strings of length )1( −K  and )2( −K  which is needed in the 

Markov model (Qi et al. 2004; Chu et al. 2004).  In particular, our new method is much faster 

than the one used in Qi et al. (2004) when K is relatively large. We have shown that this 

approach is applicable for analyzing the prokaryotes as well as the much smaller genomes of 

chloroplasts. We believe that the present approach is an important step towards the analysis of the 

wealth of information provided by genome projects.   
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Fig. 1   Phylogeny of  54 organisms (prokaryotes and eukaryotes) selected on our new 

compositional approach..   
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       Fig. 2  Phylogeny of chloroplast genomes based on our new compositional approach. 

 


