21 research outputs found

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Spectrum/space switching and multi-terabit transmission in agile optical metro networks

    No full text
    \u3cp\u3eAn SDN-enabled modular photonic system architecture, including VCSEL-based bandwidth/bitrate variable transceivers, for multi-terabit capacity transmission and agile spectrum/space switching in optical metro networks is presented, providing the proposed technological solutions, programmability aspects and preliminary assessment.\u3c/p\u3

    Rare earth elements (REE) in biology and medicine

    Get PDF
    AbstractThis survey reports on topics that were presented at the workshop on "Challenges with Rare Earth Elements. The Periodic Table at work for new Science & Technology" hold at the Academia dei Lincei in November 2019. The herein reported materials refer to presentations dealing with studies and applications of rare earth elements (REE) in several areas of Biology and Medicine. All together they show the tremendous impact REE have in relevant fields of living systems and highlight, on one hand, the still existing knowledge gap for an in-depth understanding of their function in natural systems as well as the very important role they already have in providing innovative scientific and technological solutions in a number of bio-medical areas and in fields related to the assessment of the origin of food and on their manufacturing processes. On the basis of the to-date achievements one expects that new initiatives will bring, in a not too far future, to a dramatic increase of our understanding of the REE involvement in living organisms as well as a ramp-up in the exploitation of the peculiar properties of REE for the design of novel applications in diagnostic procedures and in the set-up of powerful medical devices. This scenario calls the governmental authorities for new responsibilities to guarantee a continuous availability of REE to industry and research labs together with providing support to activities devoted to their recovery/recycling
    corecore