962 research outputs found
A Measurement of the Cosmic Ray Spectrum and Composition at the Knee
The energy spectrum and primary composition of cosmic rays with energy
between and 3\times10^{16}\unit{eV} have been studied using
the CASA-BLANCA detector. CASA measured the charged particle distribution of
air showers, while BLANCA measured the lateral distribution of Cherenkov light.
The data are interpreted using the predictions of the CORSIKA air shower
simulation coupled with four different hadronic interaction codes.
The differential flux of cosmic rays measured by BLANCA exhibits a knee in
the range of 2--3 PeV with a width of approximately 0.5 decades in primary
energy. The power law indices of the differential flux below and above the knee
are and .
We present our data both as a mean depth of shower maximum and as a mean
nuclear mass. A multi-component fit using four elemental species shows the same
composition trends given by the mean quantities, and also indicates that QGSJET
and VENUS are the preferred hadronic interaction models. We find that an
initially mixed composition turns lighter between 1 and 3 PeV, and then becomes
heavier with increasing energy above 3 PeV.Comment: 25 pages, 10 figures. Submitted to Astroparticle Physic
Detecting Determinacy in Prolog Programs: 22nd International Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings
In program development it is useful to know that a call to a Prolog program will not inadvertently leave a choice-point on the stack. Determinacy inference has been proposed for solving this problem yet the analysis was found to be wanting in that it could not infer determinacy conditions for programs that contained cuts or applied certain tests to select a clause. This paper shows how to remedy these serious deficiencies. It also addresses the problem of identifying those predicates which can be rewritten in a more deterministic fashion. To this end, a radically new form of determinacy inference is introduced, which is founded on ideas in ccp, that is capable of reasoning about the way bindings imposed by a rightmost goal can make a leftmost goal deterministic
Joint Resummation for Higgs Production
We study the application of the joint resummation formalism to Higgs
production via gluon-gluon fusion at the LHC, defining inverse transforms by
analytic continuation. We work at next-to-leading logarithmic accuracy. We find
that at low Q_T the resummed Higgs Q_T distributions are comparable in the
joint and pure-Q_T formalisms, with relatively small influence from threshold
enhancement in this range. We find a modest (about ten percent) decrease in the
inclusive cross section, relative to pure threshold resummation.Comment: 22 pages, LaTeX, 5 figures as eps file
Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation
The transverse momentum distribution is computed for inclusive Higgs
boson production at the energy of the CERN Large Hadron Collider. We focus on
the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and
incorporate contributions from the quark-gluon and quark-antiquark channels.
Using an impact-parameter -space formalism, we include all-orders
resummation of large logarithms associated with emission of soft gluons. Our
resummed results merge smoothly at large with the fixed-order
expectations in perturbative quantum chromodynamics, as they should, with no
need for a matching procedure. They show a high degree of stability with
respect to variation of parameters associated with the non-perturbative input
at low . We provide distributions for Higgs boson masses
from to 200 GeV. The average transverse momentum at zero rapidity
grows approximately linearly with mass of the Higgs boson over the range ~GeV. We provide analogous results
for boson production, for which we compute GeV. The
harder transverse momentum distribution for the Higgs boson arises because
there is more soft gluon radiation in Higgs boson production than in
production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in
wording. Published in Phys. Rev. D67, 034026 (2003
Dynamical Systems approach to Saffman-Taylor fingering. A Dynamical Solvability Scenario
A dynamical systems approach to competition of Saffman-Taylor fingers in a
channel is developed. This is based on the global study of the phase space
structure of the low-dimensional ODE's defined by the classes of exact
solutions of the problem without surface tension. Some simple examples are
studied in detail, and general proofs concerning properties of fixed points and
existence of finite-time singularities for broad classes of solutions are
given. The existence of a continuum of multifinger fixed points and its
dynamical implications are discussed. The main conclusion is that exact
zero-surface tension solutions taken in a global sense as families of
trajectories in phase space spanning a sufficiently large set of initial
conditions, are unphysical because the multifinger fixed points are
nonhyperbolic, and an unfolding of them does not exist within the same class of
solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed
points is argued to be essential to the physically correct qualitative
description of finger competition. The restoring of hyperbolicity by surface
tension is discussed as the key point for a generic Dynamical Solvability
Scenario which is proposed for a general context of interfacial pattern
selection.Comment: 3 figures added, major rewriting of some sections, submitted to Phys.
Rev.
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV
Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs)
consist of dipole distributions oriented towards major astrophysical landmarks
such as the galactic center, M87, or Centaurus A. We use a comparison between
real data and simulated data to show that the HiRes-I monocular data for
energies above 10^{18.5} eV is, in fact, consistent with an isotropic source
model. We then explore methods to quantify our sensitivity to dipole source
models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure
Suspension high velocity oxy-fuel spraying of a rutile TiO 2 feedstock: microstructure, phase evolution and photocatalytic behaviour
Nano-structured TiO2 coatings were produced by suspension high velocity oxy fuel (SHVOF) thermal spraying using water-based suspensions containing 30 wt% of submicron rutile powders (~180 nm). By changing the flame heat powers from 40 kW to 101 kW, TiO2 coatings were obtained with distinctive microstructures, phases and photocatalytic behaviour. Spraying with low power (40 kW) resulted in a more porous microstructure with the presence of un-melted nano-particles and a lower content of the anatase phase; meanwhile, high powers (72/101 kW) resulted in denser coatings and rougher surfaces with distinctive humps but not necessarily with a higher content of anatase. Linear sweep voltammetry (LSV) was used to evaluate the photocatalytic performance. Surprisingly, coatings with the lowest anatase content (~20%) using 40 kW showed the best photocatalytic behaviour with the highest photo-conversion efficiency. It was suggested that this was partially owing to the increased specific surface area of the un-melted nano-particles. More importantly, the structural arrangement of the similarly sized TiO2 nano-crystallites between rutile and antase phases also created catalytic “hot spots” at the rutile−anatase interface and greatly improved the photo-activity
Cosmological distance indicators
We review three distance measurement techniques beyond the local universe:
(1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and
(3) HI intensity mapping. We describe the principles and theory behind each
method, the ingredients needed for measuring such distances, the current
observational results, and future prospects. Time delays from strongly lensed
quasars currently provide constraints on with < 4% uncertainty, and with
1% within reach from ongoing surveys and efforts. Recent exciting discoveries
of strongly lensed supernovae hold great promise for time-delay cosmography.
BAO features have been detected in redshift surveys up to z <~ 0.8 with
galaxies and z ~ 2 with Ly- forest, providing precise distance
measurements and with < 2% uncertainty in flat CDM. Future BAO
surveys will probe the distance scale with percent-level precision. HI
intensity mapping has great potential to map BAO distances at z ~ 0.8 and
beyond with precisions of a few percent. The next years ahead will be exciting
as various cosmological probes reach 1% uncertainty in determining , to
assess the current tension in measurements that could indicate new
physics.Comment: Review article accepted for publication in Space Science Reviews
(Springer), 45 pages, 10 figures. Chapter of a special collection resulting
from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in
the Space Ag
- …
