1,119 research outputs found

    La plus-value des images

    Get PDF
    La plus-value des images

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure

    Evidence from Cameroon reveals differences in the genetic structure and histories of chimpanzee populations

    Get PDF
    The history of the genus Pan is a topic of enduring interest. Chimpanzees (Pan troglodytes) are often divided into subspecies, but the population structure and genetic history of chimpanzees across Africa remain unclear. Some population genetics studies have led to speculation that, until recently, this species constituted a single population with ongoing gene flow across its range, which resulted in a continuous gradient of allele frequencies. Chimpanzees, designated here as P. t. ellioti, occupy the Gulf of Guinea region that spans southern Nigeria and western Cameroon at the center of the distribution of this species. Remarkably, few studies have included individuals from this region, hindering the examination of chimpanzee population structure across Africa. Here, we analyzed microsatellite genotypes of 94 chimpanzees, including 32 designated as P. t. ellioti. We find that chimpanzees fall into three major populations: (i) Upper Guinea in western Africa (P. t. verus); (ii) the Gulf of Guinea region (P. t. ellioti); and (iii) equatorial Africa (P. t. troglodytes and P. t. schweinfurthii). Importantly, the Gulf of Guinea population is significantly different genetically from the others, sharing a last common ancestor with the populations in Upper Guinea similar to 0.46 million years ago (mya) and equatorial Africa similar to 0.32 mya. Equatorial chimpanzees are subdivided into up to three populations occupying southern Cameroon, central Africa, and eastern Africa, which may have constituted a single population until similar to 0.10-0.11 mya. Finally, occasional hybridization may be occurring between the Gulf of Guinea and southern Cameroon population

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo

    Get PDF
    We treated 10 children with X-linked SCID (SCID-X1) using gammaretrovirus-mediated gene transfer. Those with sufficient follow-up were found to have recovered substantial immunity in the absence of any serious adverse events up to 5 years after treatment. To determine the influence of vector integration on lymphoid reconstitution, we compared retroviral integration sites (RISs) from peripheral blood CD3(+) T lymphocytes of 5 patients taken between 9 and 30 months after transplantation with transduced CD34(+) progenitor cells derived from 1 further patient and I healthy donor. Integration occurred preferentially in gene regions on either side of transcription start sites, was clustered, and correlated with the expression level in CD34(+) progenitors during transduction. In contrast to those in CD34(+) cells, RISs recovered from engrafted CD3(+)T cells were significantly overrepresented within or near genes encoding proteins with kinase or transferase activity or involved in phosphorus metabolism. Although gross patterns of gene expression were unchanged in transduced cells, the divergence of RIS target frequency between transduced progenitor cells and post-thymic T lymphocytes indicates that vector integration influences cell survival, engraftment, or proliferation

    Measurement of Pion Enhancement at Low Transverse Momentum and of the Delta-Resonance Abundance in Si-Nucleus Collisions at AGS Energy

    Get PDF
    We present measurements of the pion transverse momentum (p_t) spectra in central Si-nucleus collisions in the rapidity range 2.0<y<5.0 for p_t down to and including p_t=0. The data exhibit an enhanced pion yield at low p_t compared to what is expected for a purely thermal spectral shape. This enhancement is used to determine the Delta-resonance abundance at freeze-out. The results are consistent with a direct measurement of the Delta-resonance yield by reconstruction of proton-pion pairs and imply a temperature of the system at freeze-out close to 140 MeV.Comment: 12 pages + 4 figures (uuencoded at end-of-file

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Pictorial turn. Una risposta

    Get PDF
    ..
    corecore