67 research outputs found

    Zusammenhänge zwischen zwei niedrigschwelligen psychosomatischen Interventionen und dem proximalen Behandlungserfolg bei Patienten mit multisomatoformer Schmerz-Störung:eine Untersuchung im Rahmen der multizentrischen, manualisierten und randomisierten klinischen Ergebnisstudie „PISO – Psychosomatische Intervention bei Patienten mit schmerzdominierter multisomatoformer Störung“ ; (gefördert durch die Deutsche Forschungsgemeinschaft AZ: HE 3200/4-1)

    Full text link
    Patienten mit somatoformen Symptomen finden sich überall im Gesundheitssystems und gelten als schwierig zu behandeln. Effektivitätsstudien von Psychotherapie auf diese Symptome sind bislang nicht ausreichend generalisierbar, es gibt Hinweise auf die Wirksamkeit psychodynamisch-interpersoneller Therapie (PIT) bei dem Irritable Bowel Syndrom. Die vorliegende Studie hatte den Nachweis zum Ziel, dass PIT syndromübergreifend kurzfristig die körperliche Lebensqualität und die Symptome dieser Patienten verbessern kann. Dazu wurden in Fachambulanzen Patienten mit einer schmerzdominanten multisomatoformen Störung rekrutiert und randomisiert zu 12 Sitzungen PIT oder einer leitlinienbasierten optimierten medizinischen Behandlung zugewiesen, (Gesamt-N=34). Der Nachweis der globalen Wirksamkeit des psychosomatischen Beziehungsangebotes auf Lebensqualität und Körpersymptome konnte trotz geringer Power erbracht werden, nicht aber der der Überlegenheit von PIT gegenüber der Vergleichsbedingung

    Long-term and seasonal variations in CO2: linkages to catchment alkalinity generation

    Get PDF
    International audienceAs atmospheric emissions of S have declined in the Northern Hemisphere, there has been an expectation of increased pH and alkalinity in streams believed to have been acidified by excess S and N. Many streams and lakes have not recovered. Evidence from East Bear Brook in Maine, USA and modelling with the groundwater acid-base model MAGIC (Cosby et al. 1985a,b) indicate that seasonal and yearly variations in soil PCO2 are adequate to enhance or even reverse acid-base (alkalinity) changes anticipated from modest decreases of SO4 in surface waters. Alkalinity is generated in the soil by exchange of H+ from dissociation of H2CO3, which in turn is derived from the dissolving of soil CO2. The variation in soil PCO2 produces an alkalinity variation of up to 15 meq L-1 in stream water. Detecting and relating increases in alkalinity to decreases in stream SO4 are significantly more difficult in the short term because of this effect. For example, modelled alkalinity recovery at Bear Brook due to a decline of 20 meq SO4 L-1 in soil solution is compensated by a decline from 0.4 to 0.2% for soil air PCO2. This compensation ability decays over time as base saturation declines. Variable PCO2 has less effect in more acidic soils. Short-term decreases of PCO2 below the long-term average value produce short-term decreases in alkalinity, whereas short-term increases in PCO2 produce short-term alkalization. Trend analysis for detecting recovery of streams and lakes from acidification after reduced atmospheric emissions will require a longer monitoring period for statistical significance than previously appreciated. Keywords: CO2 , alkalinity, acidification, recovery, soils, climate chang

    Theoretical description of phase coexistence in model C60

    Full text link
    We have investigated the phase diagram of the Girifalco model of C60 fullerene in the framework provided by the MHNC and the SCOZA liquid state theories, and by a Perturbation Theory (PT), for the free energy of the solid phase. We present an extended assessment of such theories as set against a recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys. 118:304 (2003)]. We have compared the theoretical predictions with the corresponding simulation results for several thermodynamic properties. Then we have determined the phase diagram of the model, by using either the SCOZA, or the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase, in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA results for the liquid-vapor coexistence, as well as for the corresponding critical points, are quite accurate. All results are discussed in terms of the basic assumptions underlying each theory. We have selected the MHNC for the fluid and the first-order PT for the solid phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical approaches. The overall results appear as a robust benchmark for further theoretical investigations on higher order C(n>60) fullerenes, as well as on other fullerene-related materials, whose description can be based on a modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.

    Bendamustine: Safety and Efficacy in the Management of Indolent Non-Hodgkins Lymphoma

    Get PDF
    Bendamustine (Treanda, Ribomustin) was recently approved by the US Food and Drug Administration (FDA) for treatment of patients with rituximab refractory indolent lymphoma and is expected to turn into a frontline therapy option for indolent lymphoma. This compound with amphoteric properties was designed in the former Germany Democratic Republic in 1960s and re-discovered in 1990s with multiple successive well-designed studies. Bendamustine possesses a unique mechanism of action with potential antimetabolite properties, and only partial cross-resistance with other alkylators. Used in combination with rituximab in vitro, bendamustine shows synergistic effects against various leukemia and lymphoma cell lines. In clinical studies, bendamustine plus rituximab is highly effective in patients with relapsed-refractory indolent lymphoma, inducing remissions in 90% or more and a median progression-free survival of 23–24 months. The optimal dosing and schedule of bendamustine administration is largely undecided and varies among studies. Results of ongoing trials and dose-finding studies will help to further help ascertain the optimal place of bendamustine in the management of indolent NHL

    Towards the first linkage map of the Didymella rabiei genome.

    Get PDF
    A genetic map was developed for the ascomycete Didymella rabiei (Kovachevski) v. Arx (anamorph: Ascochyta rabiei Pass. Labr.), the causal agent of Ascochyta blight in chickpea (Cicer arietinum L.). The map was generated with 77 F1 progeny derived from crossing an isolate from the U.S.A. and an isolate from Syria. A total of 232 DAF (DNA AmplificationFingerprinting) primers and 37 STMS (Sequence-Tagged Microsatellite Site) primer pairs were tested for polymorphism between the parental isolates; 50 markers were mapped, 36 DAFs and 14 STMSs. These markers cover 261.4cM in ten linkage groups. Nineteen markers remained unlinked. Significant deviation from the expected 1:1 segregation ratios was observed for only two markers (Prob. of x2 <0.05). The implications of our results on ploidy level of the asexual spores are discussed

    Effect of Polydispersity and Anisotropy in Colloidal and Protein Solutions: an Integral Equation Approach

    Full text link
    Application of integral equation theory to complex fluids is reviewed, with particular emphasis to the effects of polydispersity and anisotropy on their structural and thermodynamic properties. Both analytical and numerical solutions of integral equations are discussed within the context of a set of minimal potential models that have been widely used in the literature. While other popular theoretical tools, such as numerical simulations and density functional theory, are superior for quantitative and accurate predictions, we argue that integral equation theory still provides, as in simple fluids, an invaluable technique that is able to capture the main essential features of a complex system, at a much lower computational cost. In addition, it can provide a detailed description of the angular dependence in arbitrary frame, unlike numerical simulations where this information is frequently hampered by insufficient statistics. Applications to colloidal mixtures, globular proteins and patchy colloids are discussed, within a unified framework.Comment: 17 pages, 7 figures, to appear in Interdiscip. Sci. Comput. Life Sci. (2011), special issue dedicated to Prof. Lesser Blu

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,e′p)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,e′p)γ(e,e'p)\gamma to H(e,e′p)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2

    Get PDF
    A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

    Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2

    Get PDF
    A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

    Extraction of the Neutron Magnetic Form Factor from Quasi-Elastic 3He(pol)(e(pol),e') at Q^2 = 0.1 - 0.6 (GeV/c)^2

    Get PDF
    We have measured the spin-dependent transverse asymmetry, A_T', in quasi-elastic inclusive electron scattering from polarized 3He with high precision at Q^2 = 0.1 to 0.6 (GeV/c)^2. The neutron magnetic form factor, GMn, was extracted at Q^2 = 0.1 and 0.2 (GeV/c)^2 using a non-relativistic Faddeev calculation that includes both final-state interactions (FSI) and meson-exchange currents (MEC). In addition, GMn was extracted at Q^2 = 0.3 to 0.6 (GeV/c)^2 using a Plane Wave Impulse Approximation calculation. The accuracy of the modeling of FSI and MEC effects was tested and confirmed with a precision measurement of the spin-dependent asymmetry in the breakup threshold region of the 3He(pol)(e(pol),e') reaction. The total relative uncertainty of the extracted GMn data is approximately 3%. Close agreement was found with other recent high-precision GMn data in this Q^2 range.Comment: Archival paper, 17 pages, 10 figures, 5 tables, submitted to Physical Review C. v2: shortened considerably, updated comparison to theor
    • …
    corecore