28 research outputs found
Dark Energy and Gravity
I review the problem of dark energy focusing on the cosmological constant as
the candidate and discuss its implications for the nature of gravity. Part 1
briefly overviews the currently popular `concordance cosmology' and summarises
the evidence for dark energy. It also provides the observational and
theoretical arguments in favour of the cosmological constant as the candidate
and emphasises why no other approach really solves the conceptual problems
usually attributed to the cosmological constant. Part 2 describes some of the
approaches to understand the nature of the cosmological constant and attempts
to extract the key ingredients which must be present in any viable solution. I
argue that (i)the cosmological constant problem cannot be satisfactorily solved
until gravitational action is made invariant under the shift of the matter
lagrangian by a constant and (ii) this cannot happen if the metric is the
dynamical variable. Hence the cosmological constant problem essentially has to
do with our (mis)understanding of the nature of gravity. Part 3 discusses an
alternative perspective on gravity in which the action is explicitly invariant
under the above transformation. Extremizing this action leads to an equation
determining the background geometry which gives Einstein's theory at the lowest
order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy,
edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure
RICORS2040 : The need for collaborative research in chronic kidney disease
Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)
BACKGROUND:
Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control.
METHODS:
Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights.
FINDINGS:
5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease.
INTERPRETATION:
International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Bayesian Evolutionary Optimization Using Helmholtz Machines
Recently, several evolutionary algorithms have been proposed that build and use an explicit distribution model of the population to perform optimization. One of the main issues in this class of algorithms is how to estimate the distribution of selected samples. In this paper, we present a Bayesian evolutionary algorithm (BEA) that learns the sample distribution by a probabilistic graphical model known as Helmholtz machines. Due to the generative nature and availability of the wake-sleep learning algorithm, the Helmholtz machines provide an e ective tool for modeling and sampling from the distribution of selected individuals. The proposed method has been applied to a suite of GA-deceptive functions. Experimental results show that the BEA with the Helmholtz machine outperforms the simple genetic algorithm
Dynamic trees: Learning to model outdoor scenes
Abstract. This paper considers the dynamic tree (DT) model, first introduced in [1]. A dynamic tree specifies a prior over structures of trees, each of which is a forest of one or more tree-structured belief networks (TSBN). In the literature standard tree-structured belief network models have been found to produce âblocky â segmentations when naturally occurring boundaries within an image did not coincide with those of the subtrees in the fixed structure of the network. Dynamic trees have a flexible architecture which allows the structure to vary to create configurations where the subtree and image boundaries align, and experimentation with the model has shown significant improvements. Here we derive an EM-style update based upon mean field inference for learning the parameters of the dynamic tree model and apply it to a database of images of outdoor scenes where all of its parameters are learned. DTs are seen to offer significant improvement in performance over the fixed-architecture TSBN and in a coding comparison the DT achieves 0.294 bits per pixel (bpp) compression compared to 0.378 bpp for lossless JPEG on images of 7 colours.
Leveraging conditional linkage models in gray-box optimization with the real-valued gene-pool optimal mixing evolutionary algorithm
Often, real-world problems are of the gray-box type. It has been shown that the Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) is in principle capable of exploiting such a Gray-Box Optimization (GBO) setting using linkage models that capture dependencies between problem variables, resulting in excellent performance and scalability on both benchmark and real-world problems that allow for partial evaluations. However, linkage models proposed for RV-GOMEA so far cannot explicitly capture overlapping dependencies. Consequently, performance degrades if such dependencies exist. In this paper, we therefore introduce various ways of using conditional linkage models in RV-GOMEA. Their use is compared to that of non-conditional models, and to VkD-CMA, whose performance is among the state of the art, on various benchmark problems with overlapping dependencies. We find that RV-GOMEA with conditional linkage models achieves the best scalability on most problems, with conditional models leading to similar or better performance than non-conditional models. We conclude that the introduction of conditional linkage models to RV-GOMEA is an important contribution, as it expands the set of problems for which optimization in a GBO setting results in substantially improved performance and scalability. In future work, conditional linkage models may prove to benefit the optimization of real-world problems.Accepted Author ManuscriptAlgorithmic
Alien Registration- Nadeau, John (Rumford, Oxford County)
https://digitalmaine.com/alien_docs/12262/thumbnail.jp
Compact genetic codes as a search strategy of evolutionary processes
Abstract. The choice of genetic representation crucially determines the capability of evolutionary processes to find complex solutions in which many variables interact. The question is how good genetic representations can be found and how they can be adapted online to account for what can be learned about the structure of the problem from previous samples. We address these questions in a scenario that we term indirect Estimation-of-Distribution: We consider a decorrelated search distribution (mutational variability) on a variable length genotype space. A one-to-one encoding onto the phenotype space then needs to induce an adapted phenotypic variability incorporating the dependencies between phenotypic variables that have been observed successful previously. Formalizing this in the framework of Estimation-of-Distribution Algorithms, an adapted phenotypic variability can be characterized as minimizing the Kullback-Leibler divergence to a population of previously selected individuals (parents). Our core result is a relation between the Kullback-Leibler divergence and the description length of the encoding in the specific scenario, stating that compact codes provide a way to minimize this divergence. A proposed class of Compression Evolutionary Algorithms and preliminary experiments with an L-system compression scheme illustrate the approach. We also discuss the implications for the self-adaptive evolution of genetic representations on the basis of neutrality (Ï-evolution) towards compact codes.