1,062 research outputs found
Neutron Stars in a Varying Speed of Light Theory
We study neutron stars in a varying speed of light (VSL) theory of gravity in
which the local speed of light depends upon the value of a scalar field .
We find that the masses and radii of the stars are strongly dependent on the
strength of the coupling between and the matter field and that for
certain choices of coupling parameters, the maximum neutron star mass can be
arbitrarily small. We also discuss the phenomenon of cosmological evolution of
VSL stars (analogous to the gravitational evolution in scalar-tensor theories)
and we derive a relation showing how the fractional change in the energy of a
star is related to the change in the cosmological value of the scalar field.Comment: 15 pages, 2 figures. Added solutions with a more realistic equation
of state. To be published in PR
SO(10) unified models and soft leptogenesis
Motivated by the fact that, in some realistic models combining SO(10) GUTs
and flavour symmetries, it is not possible to achieve the required baryon
asymmetry through the CP asymmetry generated in the decay of right-handed
neutrinos, we take a fresh look on how deep this connection is in SO(10). The
common characteristics of these models are that they use the see-saw with
right-handed neutrinos, predict a normal hierarchy of masses for the neutrinos
observed in oscillating experiments and in the basis where the right-handed
Majorana mass is diagonal, the charged lepton mixings are tiny.
In addition these models link the up-quark Yukawa matrix to the neutrino
Yukawa matrix Y^\nu with the special feature of Y^\nu_{11}-> 0 Using this
condition, we find that the required baryon asymmetry of the Universe can be
explained by the soft leptogenesis using the soft B parameter of the second
lightest right-handed neutrino whose mass turns out to be around 10^8 GeV. It
is pointed out that a natural way to do so is to use no-scale supergravity
where the value of B ~1 GeV is set through gauge-loop corrections.Comment: 26 pages, 2 figures. Added references, new appendix of a relevant fit
and improved comment
Forecasting U.S. Home Foreclosures with an Index of Internet Keyword Searches
Finding data to feed into financial and risk management models can be challenging. Many analysts attribute a lack of data or quality information as a contributing factor to the worldwide financial crises that seems to have begun in the U.S. subprime mortgage market. In this paper, a new source of data, key word search statistics recently available from Google, are applied in a experiment to develop a short-term forecasting model for the number of foreclosures in the U.S. housing market. The keyword search data significantly improves forecast of foreclosures, suggesting that this data can be useful for financial risk management. More generally, the new data source shows promise for a variety of financial and market analyses
Thermal leptogenesis in a model with mass varying neutrinos
In this paper we consider the possibility of neutrino mass varying during the
evolution of the Universe and study its implications on leptogenesis.
Specifically, we take the minimal seesaw model of neutrino masses and introduce
a coupling between the right-handed neutrinos and the dark energy scalar field,
the Quintessence. In our model, the right-handed neutrino masses change as the
Quintessence scalar evolves. We then examine in detail the parameter space of
this model allowed by the observed baryon number asymmetry. Our results show
that it is possible to lower the reheating temperature in this scenario in
comparison with the case that the neutrino masses are unchanged, which helps
solve the gravitino problem. Furthermore, a degenerate neutrino mass patten
with larger than the upper limit given in the minimal leptogenesis
scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR
Measuring in the Early Universe: CMB Temperature, Large-Scale Structure and Fisher Matrix Analysis
We extend our recent work on the effects of a time-varying fine-structure
constant in the cosmic microwave background, by providing a thorough
analysis of the degeneracies between and the other cosmological
parameters, and discussing ways to break these with both existing and/or
forthcoming data. In particular, we present the state-of-the-art CMB
constraints on , through a combined analysis of the BOOMERanG, MAXIMA
and DASI datasets. We also present a novel discussion of the constraints on
coming from large-scale structure observations, focusing in particular
on the power spectrum from the 2dF survey. Our results are consistent with no
variation in from the epoch of recombination to the present day, and
restrict any such (relative) variation to be less than about 4%. We show that
the forthcoming MAP and (particularly) Planck experiments will be able to break
most of the currently existing degeneracies between and other
parameters, and measure to better than percent accuracy.Comment: 11 pages in RevTex4 format. Low-quality figures to comply with arXiv
restrictions (better ones available from the authors). v2: Updated Oklo
discussion, plus other cosmetic changes. Version to appear in Phys Rev
Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)
The \textit{Sun Watcher using Active Pixel system detector and Image
Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2}
(PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel
centered at 174 \AA. These data, together with \textit{Atmospheric Imaging
Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on
board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics
of coronal bright points. The evolution of the magnetic polarities and
associated changes in morphology are studied using magnetograms and
multi-wavelength imaging. The morphology of the bright points seen in
low-resolution SWAP images and high-resolution AIA images show different
structures, whereas the intensity variations with time show similar trends in
both SWAP 174 and AIA 171 channels. We observe that bright points are seen in
EUV channels corresponding to a magnetic-flux of the order of Mx. We
find that there exists a good correlation between total emission from the
bright point in several UV\todash EUV channels and total unsigned photospheric
magnetic flux above certain thresholds. The bright points also show periodic
brightenings and we have attempted to find the oscillation periods in bright
points and their connection to magnetic flux changes. The observed periods are
generally long (10\todash 25 minutes) and there is an indication that the
intensity oscillations may be generated by repeated magnetic reconnection
A multi-classifier approach to dialogue act classification using function words
This paper extends a novel technique for the classification of sentences as Dialogue Acts, based on structural information contained in function words. Initial experiments on classifying questions in the presence of a mix of straightforward and “difficult” non-questions yielded promising results, with classification accuracy approaching 90%. However, this initial dataset does not fully represent the various permutations of natural language in which sentences may occur. Also, a higher Classification Accuracy is desirable for real-world applications. Following an analysis of categorisation of sentences, we present a series of experiments that show improved performance over the initial experiment and promising performance for categorising more complex combinations in the future
Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases
This study aims at the early diagnostics of geoeffectiveness of coronal mass
ejections (CMEs) from quantitative parameters of the accompanying EUV dimming
and arcade events. We study events of the 23th solar cycle, in which major
non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently
reliably identified with their solar sources in the central part of the disk.
Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant
dimming and arcade areas and calculate summarized unsigned magnetic fluxes in
these regions at the photospheric level. The high relevance of this eruption
parameter is displayed by its pronounced correlation with the Forbush decrease
(FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz
component but is determined by global characteristics of ICMEs. Correlations
with the same magnetic flux in the solar source region are found for the GMS
intensity (at the first step, without taking into account factors determining
the Bz component near the Earth), as well as for the temporal intervals between
the solar eruptions and the GMS onset and peak times. The larger the magnetic
flux, the stronger the FD and GMS intensities are and the shorter the ICME
transit time is. The revealed correlations indicate that the main quantitative
characteristics of major non-recurrent space weather disturbances are largely
determined by measurable parameters of solar eruptions, in particular, by the
magnetic flux in dimming areas and arcades, and can be tentatively estimated in
advance with a lead time from 1 to 4 days. For GMS intensity, the revealed
dependencies allow one to estimate a possible value, which can be expected if
the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
- …