2,748 research outputs found

    Players Indifferent to Cooperate and Characterizations of the Shapley Value

    Get PDF
    In this paper we provide new axiomatizations of the Shapley value for TU-games using axioms that are based on relational aspects in the interactions among players. Some of these relational aspects, in particular the economic or social interest of each player in cooperating with each other, can be found embedded in the characteristic function. We define a particular relation among the players that it is based on mutual indifference. The first newaxiom expresses that the payoffs of two playerswho are not indifferent to each other are affected in the same way if they become enemies and do not cooperate with each other anymore. The second new axiom expresses that the payoff of a player is not affected if players to whom it is indifferent leave the game. We show that the Shapley value is characterized by these two axioms together with the well-known efficiency axiom. Further, we show that another axiomatization of the Shapley value is obtained if we replace the second axiom and efficiency by the axiom which applies the efficiency condition to every class of indifferent players. Finally, we extend the previous results to the case of weighted Shapley values. © Springer-Verlag Berlin Heidelberg 2012

    Mobile Robot Object Recognition through the Synergy of Probabilistic Graphical Models and Semantic Knowledge

    Get PDF
    J.R. Ruiz-Sarmiento and C. Galindo and J. Gonzalez-Jimenez, Mobile Robot Object Recognition through the Synergy of Probabilistic Graphical Models and Semantic Knowledge, in European Conf. of Artificial Intelligence, CogRob workshop, 2014.Mobile robots intended to perform high-level tasks have to recognize objects in their workspace. In order to increase the success of the recognition process, recent works have studied the use of contextual information. Probabilistic Graphical Models (PGMs) and Semantic Knowledge (SK) are two well-known approaches for dealing with contextual information, although they exhibit some drawbacks: the PGMs complexity exponentially increases with the number of objects in the scene, while SK are unable to handle uncertainty. In this work we combine both approaches to address the object recognition problem. We propose the exploitation of SK to reduce the complexity of the probabilistic inference, while we rely on PGMs to enhance SK with a mechanism to manage uncertainty. The suitability of our method is validated through a set of experiments, in which a mobile robot endowed with a Kinect-like sensor captured 3D data from 25 real environments, achieving a promising result of ~94% of success.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This work has been funded by the Spanish grant program FPU-MICINN 2010 and the Spanish project "TAROTH: New developments toward a robot at home"

    Minimal H\"older regularity implying finiteness of integral Menger curvature

    Full text link
    We study two families of integral functionals indexed by a real number p>0p > 0. One family is defined for 1-dimensional curves in R3\R^3 and the other one is defined for mm-dimensional manifolds in Rn\R^n. These functionals are described as integrals of appropriate integrands (strongly related to the Menger curvature) raised to power pp. Given p>m(m+1)p > m(m+1) we prove that C1,αC^{1,\alpha} regularity of the set (a curve or a manifold), with α>α0=1m(m+1)p\alpha > \alpha_0 = 1 - \frac{m(m+1)}p implies finiteness of both curvature functionals (m=1m=1 in the case of curves). We also show that α0\alpha_0 is optimal by constructing examples of C1,α0C^{1,\alpha_0} functions with graphs of infinite integral curvature

    Cup products on polyhedral approximations of 3D digital images

    Get PDF
    Let I be a 3D digital image, and let Q(I) be the associated cubical complex. In this paper we show how to simplify the combinatorial structure of Q(I) and obtain a homeomorphic cellular complex P(I) with fewer cells. We introduce formulas for a diagonal approximation on a general polygon and use it to compute cup products on the cohomology H *(P(I)). The cup product encodes important geometrical information not captured by the cohomology groups. Consequently, the ring structure of H *(P(I)) is a finer topological invariant. The algorithm proposed here can be applied to compute cup products on any polyhedral approximation of an object embedded in 3-space

    Application of Electrical Bio-Impedance for the Evaluation of Strawberry Ripeness

    Full text link
    "This is an Author's Accepted Manuscript of an article published in González-Araiza, José Raymundo, María Coral Ortiz-Sánchez, Francisco Miguel Vargas-Luna, and José Manuel Cabrera-Sixto. 2016. Application of Electrical Bio-Impedance for the Evaluation of Strawberry Ripeness. International Journal of Food Properties 20 (5). Informa UK Limited: 1044 50. doi:10.1080/10942912.2016.1199033, available online at: https://www.tandfonline.com/doi/full/10.1080/10942912.2016.1199033."[EN] Electrical bio-impedance measurements were conducted on local strawberry fruits. A non-destructive device was designed to obtain the impedance spectrum of the whole fruit. Four electrical variables were tested: low frequency resistor R0 (related to extracellular resistances), the high frequency resistor R∞ (related to intracellular resistances), and constant phase element (magnitude and phase, related to the membrane capacitances and heterogeneity, respectively). In parallel with the electrical bio-impedance measurement, color and firmness were correlated to the ripeness stage. The results indicated that the strawberries at the highest stage of ripeness had significantly lower constant phase element and R0 values.The authors would like to express their gratitude to Mr. and Mrs. Abraham from Irapuato, Mexico for providing the fruits, and to Mr. Juan Manuel Noriega from the University of Guanajuato for his technical support. The authors would like to thank the University of Guanajuato for the financial support.Gonzalez-Araiza, J.; Ortiz Sánchez, MC.; Vargas-Luna, F.; Cabrera-Sixto, J. (2017). Application of Electrical Bio-Impedance for the Evaluation of Strawberry Ripeness. International Journal of Food Properties. 20(5):1044-1050. https://doi.org/10.1080/10942912.2016.1199033S10441050205Cordenunsi, B. R., Nascimento, J. R. O., & Lajolo, F. M. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry, 83(2), 167-173. doi:10.1016/s0308-8146(03)00059-1Sacks, E. J., & Shaw, D. V. (1994). Optimum Allocation of Objective Color Measurements for Evaluating Fresh Strawberries. Journal of the American Society for Horticultural Science, 119(2), 330-334. doi:10.21273/jashs.119.2.330Harker, F. R., & Forbes, S. K. (1997). Ripening and development of chilling injury in persimmon fruit: An electrical impedance study. New Zealand Journal of Crop and Horticultural Science, 25(2), 149-157. doi:10.1080/01140671.1997.9514001Bauchot, A. D., Harker, F. R., & Arnold, W. M. (2000). The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit. Postharvest Biology and Technology, 18(1), 9-18. doi:10.1016/s0925-5214(99)00056-3Harker, F. R., & Maindonald, J. H. (1994). Ripening of Nectarine Fruit (Changes in the Cell Wall, Vacuole, and Membranes Detected Using Electrical Impedance Measurements). Plant Physiology, 106(1), 165-171. doi:10.1104/pp.106.1.165Fang, Q., Liu, X., & Cosic, I. (s. f.). Bioimpedance Study on Four Apple Varieties. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, 114-117. doi:10.1007/978-3-540-73841-1_32Vozáry, E., & Benkó, P. (2010). Non-destructive determination of impedance spectrum of fruit flesh under the skin. Journal of Physics: Conference Series, 224, 012142. doi:10.1088/1742-6596/224/1/012142Harker, F. R., Elgar, H. J., Watkins, C. B., Jackson, P. J., & Hallett, I. C. (2000). Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biology and Technology, 19(2), 139-146. doi:10.1016/s0925-5214(00)00090-9Juansah, J., Budiastra, I. W., Dahlan, K., & Seminar, K. B. (2014). Electrical Properties of Garut Citrus Fruits at Low Alternating Current Signal and its Correlation with Physicochemical Properties During Maturation. International Journal of Food Properties, 17(7), 1498-1517. doi:10.1080/10942912.2012.723233O’Toole, M. D., Marsh, L. A., Davidson, J. L., Tan, Y. M., Armitage, D. W., & Peyton, A. J. (2015). Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement. Measurement Science and Technology, 26(3), 035102. doi:10.1088/0957-0233/26/3/035102Gore, C. M., White, J. O., Wachsman, E. D., & Thangadurai, V. (2014). Effect of composition and microstructure on electrical properties and CO2 stability of donor-doped, proton conducting BaCe1−(x+y)ZrxNbyO3. Journal of Materials Chemistry A, 2(7), 2363. doi:10.1039/c3ta12668

    Connectivity forests for homological analysis of digital volumes

    Get PDF
    In this paper, we provide a graph-based representation of the homology (information related to the different “holes” the object has) of a binary digital volume. We analyze the digital volume AT-model representation [8] from this point of view and the cellular version of the AT-model [5] is precisely described here as three forests (connectivity forests), from which, for instance, we can straightforwardly determine representative curves of “tunnels” and “holes”, classify cycles in the complex, computing higher (co)homology operations,... Depending of the order in which we gradually construct these trees, tools so important in Computer Vision and Digital Image Processing as Reeb graphs and topological skeletons appear as results of pruning these graphs

    Protein sequence and structure: Is one more fundamental than the other?

    Full text link
    We argue that protein native state structures reside in a novel "phase" of matter which confers on proteins their many amazing characteristics. This phase arises from the common features of all globular proteins and is characterized by a sequence-independent free energy landscape with relatively few low energy minima with funnel-like character. The choice of a sequence that fits well into one of these predetermined structures facilitates rapid and cooperative folding. Our model calculations show that this novel phase facilitates the formation of an efficient route for sequence design starting from random peptides.Comment: 7 pages, 4 figures, to appear in J. Stat. Phy

    Ground-state properties of tubelike flexible polymers

    Full text link
    In this work we investigate structural properties of native states of a simple model for short flexible homopolymers, where the steric influence of monomeric side chains is effectively introduced by a thickness constraint. This geometric constraint is implemented through the concept of the global radius of curvature and affects the conformational topology of ground-state structures. A systematic analysis allows for a thickness-dependent classification of the dominant ground-state topologies. It turns out that helical structures, strands, rings, and coils are natural, intrinsic geometries of such tubelike objects

    Atmospheric Neutrino Oscillations and New Physics

    Get PDF
    We study the robustness of the determination of the neutrino masses and mixing from the analysis of atmospheric and K2K data under the presence of different forms of phenomenologically allowed new physics in the nu_mu--nu_tau sector. We focus on vector and tensor-like new physics interactions which allow us to treat, in a model independent way, effects due to the violation of the equivalence principle, violations of the Lorentz invariance both CPT conserving and CPT violating, non-universal couplings to a torsion field and non-standard neutrino interactions with matter. We perform a global analysis of the full atmospheric data from SKI together with long baseline K2K data in the presence of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together with sub-dominant effects due to these forms of new physics. We show that within the present degree of experimental precision, the extracted values of masses and mixing are robust under those effects and we derive the upper bounds on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include
    corecore