242 research outputs found
Supporting 'design for reuse' with modular design
Engineering design reuse refers to the utilization of any knowledge gained from the design activity to support future design. As such, engineering design reuse approaches are concerned with the support, exploration, and enhancement of design knowledge prior, during, and after a design activity. Modular design is a product structuring principle whereby products are developed with distinct modules for rapid product development, efficient upgrades, and possible reuse (of the physical modules). The benefits of modular design center on a greater capacity for structuring component parts to better manage the relation between market requirements and the designed product. This study explores the capabilities of modular design principles to provide improved support for the engineering design reuse concept. The correlations between modular design and 'reuse' are highlighted, with the aim of identifying its potential to aid the little-supported process of design for reuse. In fulfilment of this objective the authors not only identify the requirements of design for reuse, but also propose how modular design principles can be extended to support design for reuse
quasiharmonic equations of state for dynamically-stabilized soft-mode materials
We introduce a method for treating soft modes within the analytical framework
of the quasiharmonic equation of state. The corresponding double-well
energy-displacement relation is fitted to a functional form that is harmonic in
both the low- and high-energy limits. Using density-functional calculations and
statistical physics, we apply the quasiharmonic methodology to solid periclase.
We predict the existence of a B1--B2 phase transition at high pressures and
temperatures
Sodium atoms and clusters on graphite: a density functional study
Sodium atoms and clusters (N<5) on graphite (0001) are studied using density
functional theory, pseudopotentials and periodic boundary conditions. A single
Na atom is observed to bind at a hollow site 2.45 A above the surface with an
adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates
a flat potential energy surface. Increased Na coverage results in a weak
adsorbate-substrate interaction, which is evident in the larger separation from
the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The
binding is weak for Na_2, which has a full valence electron shell. The presence
of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and
both Na_4 and Na_5 are distorted from planarity. The calculated formation
energies suggest that clustering of atoms is energetically favorable, and that
the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite
than in the gas phase. Analysis of the lateral charge density distributions of
Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure
Geometric origin of mechanical properties of granular materials
Some remarkable generic properties, related to isostaticity and potential
energy minimization, of equilibrium configurations of assemblies of rigid,
frictionless grains are studied. Isostaticity -the uniqueness of the forces,
once the list of contacts is known- is established in a quite general context,
and the important distinction between isostatic problems under given external
loads and isostatic (rigid) structures is presented. Complete rigidity is only
guaranteed, on stability grounds, in the case of spherical cohesionless grains.
Otherwise, the network of contacts might deform elastically in response to load
increments, even though grains are rigid. This sets an uuper bound on the
contact coordination number. The approximation of small displacements (ASD)
allows to draw analogies with other model systems studied in statistical
mechanics, such as minimum paths on a lattice. It also entails the uniqueness
of the equilibrium state (the list of contacts itself is geometrically
determined) for cohesionless grains, and thus the absence of plastic
dissipation. Plasticity and hysteresis are due to the lack of such uniqueness
and may stem, apart from intergranular friction, from small, but finite,
rearrangements, in which the system jumps between two distinct potential energy
minima, or from bounded tensile contact forces. The response to load increments
is discussed. On the basis of past numerical studies, we argue that, if the ASD
is valid, the macroscopic displacement field is the solution to an elliptic
boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and
minor errors correcte
Using social network sites in Higher Education: An experience in business studies
In the past 5 years the impact of Web 2.0 in new generations has been remarkably significant (Pew Research Center, 2010). This paper reports on an experience in the use of Social Network Sites (SNS) to support student involvement with the subject and to develop basic skills.
According to students’ opinion, the experience was deemed as positive. They considered that the experience contributed to a higher engagement with the subject and a deeper collaboration with other students and teaching staff. As a result, the majority of students would prefer the use of SNS as a first option if they had to enrol again in the subject.
Regarding the relationships between academic performance and use of the SNS, two different student profiles were identified based on usage patterns of the platform. Students with a more intensive use of the site showed a significantly better performance than students with a low usage profile.This work was partially supported by the Junta de Andalucía – FEDER (Proyectos de Excelencia: SEJ-02670
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
Haldane-Gapped Spin Chains as Luttinger Liquids: Correlation Functions at Finite Field
We study the behavior of Heisenberg, antiferromagnetic, integer-spin chains
in the presence of a magnetic field exceeding the attendant spin gap. For
temperatures much smaller than the gap, the spin chains exhibit Luttinger
liquid behavior. We compute exactly both the corresponding Luttinger parameter
and the Fermi velocity as a function of magnetic field. This enables the
computation of a number of correlators from which we derive the spin
conductance, the expected form of the dynamic structure factor relevant to
inelastic neutron scattering experiments, and NMR relaxation rates. We also
comment upon the robustness of the magnetically induced gapless phase both to
finite temperature and finite couplings between neighbouring chains.Comment: 32 pages, 8 figures; published version includes additions discussing
the robustness of the magnetically induced gapless phase to ordering between
chains as well as the relationship between the spin-1 chains and spin-1/2
ladders in the presence of a magnetic fiel
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients
BACKGROUND: Urokinase-type plasminogen activator (uPA) and its inhibitor
(PAI-1) play essential roles in tumor invasion and metastasis. High levels
of both uPA and PAI-1 are associated with poor prognosis in breast cancer
patients. To confirm the prognostic value of uPA and PAI-1 in primary
breast cancer, we reanalyzed individual patient data provided by members
of the European Organization for Research and Treatment of Cancer-Receptor
and Biomarker Group (EORTC-RBG). METHODS: The study included 18 datasets
involving 8377 breast cancer patients. During follow-up (median 79
months), 35% of the patients relapsed and 27% died. Levels of uPA and
PAI-1 in tumor tissue extracts were determined by different immunoassays;
values were ranked within each dataset and divided by the number of
patients in that dataset to produce fractional ranks that could be
compared directly across datasets. Associations of ranks of uPA and PAI-1
levels with relapse-free survival (RFS) and overall survival (OS) were
analyzed by Cox multivariable regression analysis stratified by dataset,
including the following traditional prognostic variables: age, menopausal
status, lymph node status, tumor size, histologic grade, and steroid
hormone-receptor status. All P values were two-sided. RESULTS: Apart from
lymph node status, high levels of uPA and PAI-1 were the strongest
predictors of both poor RFS and poor OS in the analyses of all patients.
Moreover, in both lymph node-positive and lymph node-negative patients,
higher uPA and PAI-1 values were independently associated with poor RFS
and poor OS. For (untreated) lymph node-negative patients in particular,
uPA and PAI-1 included together showed strong prognostic ability (all
P<.001). CONCLUSIONS: This pooled analysis of the EORTC-RBG datasets
confirmed the strong and independent prognostic value of uPA and PAI-1 in
primary breast cancer. For patients with lymph node-negative breast
cancer, uPA and PAI-1 measurements in primary tumors may be especially
useful for designing individualized treatment strategies
CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer
DNA microarrays have the potential to classify tumors according to their transcriptome. Tissue microarrays (TMAs) facilitate the validation of biomarkers by offering a high-throughput approach to sample analysis. We reanalyzed a high profile breast cancer DNA microarray dataset containing 96 tumor samples using a powerful statistical approach, between group analyses. Among the genes we identified was centromere protein-F (CENP-F), a gene associated with poor prognosis. In a published follow-up breast cancer DNA microarray study, comprising 295 tumour samples, we found that CENP-F upregulation was significantly associated with worse overall survival (p < 0.001) and reduced metastasis-free survival (p < 0.001). To validate and expand upon these findings, we used 2 independent breast cancer patient cohorts represented on TMAs. CENP-F protein expression was evaluated by immunohistochemistry in 91 primary breast cancer samples from cohort I and 289 samples from cohort II. CENP-F correlated with markers of aggressive tumor behavior including ER negativity and high tumor grade. In cohort I, CENP-F was significantly associated with markers of CIN including cyclin E, increased telomerase activity, c-Myc amplification and aneuploidy. In cohort II, CENP-F correlated with VEGFR2, phosphorylated Ets-2 and Ki67, and in multivariate analysis, was an independent predictor of worse breast cancer-specific survival (p = 0.036) and overall survival (p = 0.040). In conclusion, we identified CENP-F as a biomarker associated with poor outcome in breast cancer and showed several novel associations of biological significance
- …