83 research outputs found

    Quantum lump dynamics on the two-sphere

    Get PDF
    It is well known that the low-energy classical dynamics of solitons of Bogomol'nyi type is well approximated by geodesic motion in M_n, the moduli space of static n-solitons. There is an obvious quantization of this dynamics wherein the wavefunction evolves according to the Hamiltonian H_0 equal to (half) the Laplacian on M_n. Born-Oppenheimer reduction of analogous mechanical systems suggests, however, that this simple Hamiltonian should receive corrections including k, the scalar curvature of M_n, and C, the n-soliton Casimir energy, which are usually difficult to compute, and whose effect on the energy spectrum is unknown. This paper analyzes the spectra of H_0 and two corrections to it suggested by work of Moss and Shiiki, namely H_1=H_0+k/4 and H_2=H_1+C, in the simple but nontrivial case of a single CP^1 lump moving on the two-sphere. Here M_1=TSO(3), a noncompact kaehler 6-manifold invariant under an SO(3)xSO(3) action, whose geometry is well understood. The symmetry gives rise to two conserved angular momenta, spin and isospin. A hidden isometry of M_1 is found which implies that all three energy spectra are symmetric under spin-isospin interchange. The Casimir energy is found exactly on the zero section of TSO(3), and approximated numerically on the rest of M_1. The lowest 19 eigenvalues of H_i are found for i=0,1,2, and their spin-isospin and parity compared. The curvature corrections in H_1 lead to a qualitatively unchanged low-level spectrum while the Casimir energy in H_2 leads to significant changes. The scaling behaviour of the spectra under changes in the radii of the domain and target spheres is analyzed, and it is found that the disparity between the spectra of H_1 and H_2 is reduced when the target sphere is made smaller.Comment: 35 pages, 3 figure

    Acceptance of candidate baits by domestic dogs for delivery of oral rabies vaccines

    Get PDF
    Protocols for evaluating oral rabies vaccine baits for domestic dogs were field tested in central Mexico, after which dog-food manufacturers and suppliers to the pet-food industry were advised as to potential ingredients for use in prototype dog baits. Bait-preference trials in which confined dogs were used were then undertaken, followed by field tests of free-ranging farmer-owned dogs in three towns in the Nile River Delta region of Egypt. Both confined and free-ranging dogs showed strong preferences for certain baits or bait coatings (poultry, beef tallow, cheese, egg and a proprietary product). Fish-meal polymer baits, widely used for wildlife species, were less preferred. In Egypt, a commercial dog-food-meal bait coated with beef tallow and dry cheese was consumed at a rate approaching that of a chicken-head bait. The percentage baits that were actually eaten after they had been offered to dogs, ranged from 71-96% for household dogs tested in Mexico, 65-91% for confined dogs (beagles and mixed breeds) tested in the United States, and 32-88% for farmer-owned dogs tested in Egypt.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat X Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format

    Basic Methods for Computing Special Functions

    Get PDF
    This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. We give examples of recent software for special functions where these methods are used. We mention a list of new publications on computational aspects of special functions available on our website

    Interféron et thyroide

    No full text

    Potential mechanisms of coexistence between two globally important Pseudo-nitzschia (Bacillariophyta) species

    No full text
    To understand the mechanisms leading to coexistence and exclusion, it is essential to establish information on the nutritional needs of species. We focused on the frequently coexisting Pseudo-nitzschia species, P. delicatissima and P. galaxiae, capable of forming blooms and producing domoic acid. We employed monoculture experiments to determine growth kinetic parameters important for understanding resource use (i.e. maximum specific growth rate, half-saturation coefficients for growth and cell quotas), and we coupled mixed-culture experiments and numerical modelling to explore the role of resource competition relative to unknown factors, such as allelopathy. Experimental results showed that both species had a high requirement for nitrogen (N) and low requirement for phosphorus (P), consistent with field observations of Pseudo-nitzschia blooms in N-rich conditions. The model accurately predicted the outcome of competition; P. galaxiae outcompeted P. delicatissima when considering only resource competition, but the population trajectories were better predicted when allelopathic effects were added. Since the competitive exclusion of P. delicatissima by P. galaxiae in our laboratory experiments is not consistent with observations of coexistence in the natural environment, the model was further modified to explore realistic ranges of population loss factors, such as sinking, demonstrating how coexistence is possible when these are considered. © 2015, Springer International Publishing Switzerland

    Isotopic analysis of the ecology of herbivores and carnivores from the Middle Pleistocene deposits of the Sierra De Atapuerca, northern Spain

    Get PDF
    Carbon and oxygen isotope values reveal resource partitioning among the large mammal fauna from three contemporaneous Middle Pleistocene hominid-bearing localities within the Sierra de Atapuerca (northern Spain). Carbon isotope values sampled from the tooth enamel of fauna present during Atapuerca Faunal Unit 6 show that a C3-dominated ecosystem surrounded the area where fossils were preserved during this time. For the herbivores, Fallow deer isotope values are significantly different from Red deer and horses and show that this species did not forage in open environments at this locality. Red deer and horses show similar feeding strategies with less negative carbon values implying use of more open environments for these taxa. For the carnivores, carbon isotope values for Ursus deningeri are significantly different from either lions (Panthera leo) or foxes (Vulpes vulpes) and support the contention that this species is herbivorous. Special metabolic mechanisms involved in hibernation in U. deningeri might also have influenced its isotope values. The carbon isotope values of remaining carnivores were similar and suggest that each was typically a generalist carnivore, eating a wide variety of prey items. While the isotopic results generally correspond to ecology indicated by previous techniques, this study shows that isotope analyses can provide further insights that alternate techniques do not provide. Isotope analyses can help elucidate the ancient ecology of taxa present in the Sierra de Atapuerca during the Middle Pleistocene allowing for an accurate portrayal of the setting in which humans lived
    corecore