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Abstract

It is well known that the low-energy classical dynamics of solitons of Bogomol’nyi
type is well approximated by geodesic motion in Mn, the moduli space of static n-
solitons. There is an obvious quantization of this dynamics wherein the wavefunction
ψ : Mn → C evolves according to the Hamiltonian H0 =

1
2△, where△ is the Laplacian on

Mn. Born-Oppenheimer reduction of analogous mechanical systems suggests, however,
that this simple Hamiltonian should receive corrections including κ, the scalar curvature
of Mn, and C , the n-soliton Casimir energy, which are usually difficult or impossible to
compute, and whose effect on the energy spectrum is unknown. This paper analyzes the
spectra of H0 and two corrections to it suggested by work of Moss and Shiiki, namely
H1 = H0 +

1
4κ and H2 = H1 + C , in the simple but nontrivial case of a single CP 1

lump moving on the two-sphere. Here M1 = Rat1, a noncompact kähler 6-manifold
invariant under an SO(3) × SO(3) action, whose geometry is well understood. The
symmetry gives rise to two conserved angular momenta, spin and isospin. By exploiting
the diffeomorphism Rat1

∼= TSO(3), a hidden isometry of Rat1 is found which implies
that all three energy spectra are symmetric under spin-isospin interchange. The Casimir
energy is found exactly on a SO(3) submanifold of Rat1, using standard results from
harmonic map theory and zeta function regularization, and approximated numerically
on the rest of Rat1. The lowest 19 eigenvalues of Hi are found, and their spin-isospin
and parity compared for i = 0, 1, 2. It is found that the curvature corrections in H1 lead
to a qualitatively unchanged low-level spectrum while the Casimir energy in H2 leads to
significant changes. The scaling behaviour of the spectra under changes in the radii of
the domain and target spheres is analyzed, and it is found that the disparity between
the spectra of H1 and H2 is reduced when the target sphere is made smaller.
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1 Introduction

Many field theories arising naturally in theoretical high energy physics may be said to be
of Bogomol’nyi type. For such theories there is a topological lower bound on the energy
of field configurations, and this bound is attained only by solutions of a first order “self-
duality” equation, the so-called solitons of the theory. The solitons are stable by virtue of
their energy-minimizing property, and are generically spatially localized lumps of energy with
strongly particle-like characteristics. Examples are magnetic monopoles, abelian Higgs vortices
and sigma model lumps. There is a well-developed geometric framework for studying the
classical low-energy dynamics of such solitons, proposed originally for monopoles by Manton
[22], called the geodesic approximation. Here, n-soliton trajectories are approximated by
geodesics in the moduli space Mn of static n-solitons, with respect to the metric induced by the
kinetic energy functional of the field theory (usually called the L2 metric). This approach has
been extremely fruitful, providing both important qualitative insight into topological soliton
dynamics and good agreement with numerical analysis of the full field theory. In the case of
vortices and monopoles, the geodesic approximation is backed by rigorous analysis [38, 39].
For a comprehensive review, see [23].

When one comes to quantize the low-energy dynamics of such solitons, two approaches
are possible. Since geodesic motion on Mn captures the classical soliton dynamics so well, it
is natural simply to quantize that [13]. Then the quantum n-soliton state is specified by a
wavefunction ψ : Mn → C, evolving subject to the Hamiltonian

Hgeo =
1
2
△, (1.1)

where △ is the Hodge Laplacian on Mn. This has the virtue of simplicity, but it ignores
the degrees of freedom normal to the moduli space completely. An alternative is to make
a low energy reduction of the full quantum field theory by means of the Born-Oppenheimer
approximation. This has been carried out for sigma model lumps by Moss and Shiiki [28].
Arguing by analogy with finite dimensional mechanical systems, they find that, once again,
the low energy quantum dynamics of n solitons can be described by a wavefunction on Mn,
but that the Hamiltonian is

HBO = 1
2
△+ 1

4
κ− 1

8
‖k‖2 + U + · · · , (1.2)

where κ is the scalar curvature of Mn, k is the mean curvature of the embedding of Mn into the
(infinite dimensional) field configuration space and U is a potential on Mn incorporating the
residual effects of the normal modes. This potential is rather complicated, but its dominant
term is the n-soliton Casimir energy, that is, the total zero-point energy of the normal modes
to the static n-soliton.

The aim of the current paper is to compare the spectra of Hgeo and HBO, to determine to
what extent the extra terms in (1.2) change the quantum energy spectrum. Of course, one
expects the numerical values of the energy eigenvalues to change to some extent. In itself,
this is not particularly important. We will be more interested in the qualitative features of
the energy spectrum. For example, on a noncompact moduli space, one could easily imagine
that Hgeo may have no bound states, while HBO does. In the extreme case, one could find
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that the spectrum of Hgeo is continuous while that of HBO is discrete. Clearly, Hgeo would be
a disastrously bad approximation in this case. Other, more refined, qualitative features can
also be compared, for example, the dimension and symmetry properties of the eigenspaces of
Hgeo and HBO, ordered by energy.

We address this issue for a specific example, namely a single CP 1 lump moving on the
two sphere (spacetime S2 × R). This choice has several mathematical advantages, making it
simple enough to be tractable, but not too simple to provide a nontrivial test of the truncation
Hgeo. First, the static n-solitons are explicitly known – they are rational maps, so Mn = Ratn.
Second, by choosing physical space to be compact (S2 here) rather than R2 (as for the model
on Minkowski space R2+1), we ensure that the L2 metric on Ratn is well defined (there are
no non-normalizable zero modes). Third, we may think of the L2 metric (formally) as the
induced metric on Ratn as a complex submanifold of (CP 1)S

2

, the infinite dimensional space
of maps S2 → CP 1. This latter is (formally) an infinite product of kähler manifolds, so is
kähler, so, as noted by Moss and Shiiki [28], the very awkward extrinsic curvature term is
absent, ‖k‖2 = 0. Fourth, the L2 metric on Rat1 is highly symmetric, so the L2 metric and its
scalar curvature can be computed explicitly. On the other hand, Rat1 is not too symmetric:
the scalar curvature and Casimir energy are non-constant functions of a single variable, the
lump width, so that (in contrast to the case of monopoles and vortices) even the n = 1 sector
provides a nontrivial test.

To be precise, we will compute the spectra of three approximations to HBO,

H0 = Hgeo =
1
2
△, H1 =

1
2
△+ 1

4
κ, H2 =

1
2
△+ 1

4
κ+ C , (1.3)

where C is the Casimir energy. We will find that the spectrum of H0 can be thought of as
a perturbed version of the spectrum of the Laplacian on CP 3 (equipped with the Fubini-
Study metric). Quantum lumps possess two integer conserved angular momentum quantum
numbers, which we call isospin k and spin t, associated with the rotational symmetries of
the target space CP 1 and the domain S2 respectively. We will show that for each choice of
k, t, the spectral problem for Hi, i = 0, 1, 2, reduces to a matrix Sturm-Liouville problem of
dimension 2min{k, t} + 1. We find that this problem is symmetric under interchange of k
and t, so the energy spectra of H0, H1, H2 all possess this symmetry. A careful analysis of
the boundary conditions for the Sturm-Liouville problem shows that the boundary conditions
appropriate for H1 are the same as for H2, but different from H0: including scalar curvature
changes the boundary conditions. Nonetheless, the spectrum is discrete in all three cases.
We have computed (numerically) the first 19 energy eigenvalues for each Hamiltonian and
tabulated {k, t} for the eigenstates in order of increasing energy. The spectra of H0 and H1

are remarkably similar. The order of states is the same apart from two transpositions. The
Casimir energy leads to significant changes in the spectrum. However, the effect of the Casimir
energy becomes less important if the radius of the target space is decreased.

2 The one-lump moduli space

Identifying CP 1 ∼= S2 and using complex stereographic coordinates z = x + iy and W on
domain and codomain respectively, we may identify a map φ : S2 → CP 1 ∼= S2 with a
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complex function W (z). The kinetic and potential energy functionals of the CP 1 model on
S2 are then

T =
1

2

∫
4|Wt|2

(1 + |W |2)2
4dxdy

(1 + |z|2)2 , V =
1

2

∫
4(|Wx|2 + |Wy|2)

(1 + |W |2)2 dxdy (2.1)

respectively. Note that, in contrast with earlier work [3, 25, 36, 37] we have given both domain
and codomain spheres the round metric of radius 1. This will allow us to make direct use of
results in the harmonic maps literature when we come to compute the Casimir energy of a
lump. We will consider how our results change when the radii of the domain and target spheres
are altered in section 5.5.

A theorem of Lichnerowicz [20] shows that, if φ has topological degree n (assumed, without
loss of generality, to be non-negative), then V ≥ 4πn, with equality if and only if φ is holomor-
phic. So degree n holomorphic maps φ : S2 → S2 minimize V within their homotopy class:
these are the solitons of the model, and the “self-duality” equation is the Cauchy-Riemann
equation. In terms of W and z, degree n holomorphic maps S2 → S2 are rational maps of
(algebraic) degree n, that is,

W =
a1z

n + · · ·+ an+1

an+2zn + · · ·+ a2n+2
, (2.2)

where ai are 2n+2 complex constants, a1 and an+2 do not both vanish, and the numerator and
denominator have no common roots. One interprets this physically as a static superposition
of n lumps. So the moduli space of static n-lumps is Ratn, the space of degree n rational maps.

The L2 metric on Ratn is defined by restricting the kinetic energy functional T to fields
W (t, z) which at each fixed t are degree n rational maps. Explicitly, in the chart where a1 6= 0,
one can define local complex coordinates qi = ai/a1, i = 2, . . . , 2n+2 on Ratn. Then allowing
q2, . . . , q2n+2 to vary with time, one substitutes

W (t, z) =
zn + q2(t)z

n−1 + · · ·+ qn+1(t)

qn+2(t)zn + qn+3(t)zn−1 + · · ·+ q2n+2(t)
(2.3)

into T , to obtain

T =
1

2

∑

ij

γij q̇iq̇j , γij =

∫
4

(1 + |W |2)2
∂W

∂qi

∂W

∂qj

4dxdy

(1 + |z|2)2 . (2.4)

The L2 metric is γ =
∑

i,j γijdqidqj . See [37] for a coordinate free definition of γ. The metric γ
is manifestly Hermitian. In fact, it is kähler [32, 37]. It is known to be geodesically incomplete
[33], so the classical geodesic approximation predicts lumps may collapse to infinitely narrow
spikes in finite time. Numerical simulation and rigorous analysis (albeit on domain C) confirm
that lump collapse can occur, though the geodesic approximation gets the fine detail of the
singularity formation process wrong [7, 21, 31].

There is an isometric action of G = SO(3)×SO(3) on Ratn, induced by the natural SO(3)
actions on the domain and target spheres. On Rat1 this action has cohomogeneity 1 (generic
G orbits have codimension 1), and, in fact, almost completely determines γ. Consequently, an
explicit formula for γ is known in this case, and the geometry is particularly well understood.
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For n = 1, the no common roots condition on the rational map W (z) = (a1z + a2)/(a3z + a4)
is a1a4 − a2a3 6= 0, so we may identify each map with a projective equivalence class [L] of
GL(2,C) matrices,

a1z + a2
a3z + a4

↔
[ (

a1 a2
a3 a4

) ]
. (2.5)

Hence Rat1
∼= PL(2,C). The action of G on Rat1 corresponds, under this identification, with

the natural action of PU(2)× PU(2) on PL(2,C):

([U1], [U2]) : [L] 7→ [U1LU
−1
2 ]. (2.6)

Now every [L] ∈ PL(2,C) has a unique polar decomposition

[L] = [U(ΛI2 + λ · τ )], (2.7)

where ([U ],λ) ∈ PU(2)×R3, Λ =
√
1 + λ2, λ = |λ|, and τ1, τ2, τ3 are the Pauli spin matrices.

Hence Rat1
∼= PU(2) × R3. Having chosen a basis { i

2
τa} for su(2), we have a canonical

identification PU(2) ∼= SO(3) under which [U ] is identified with the orthogonal transformation
AdU : su(2) → su(2). Hence Rat1

∼= SO(3)× R3, and the G action is

(R1, R2) : (R,λ) 7→ (R1RR
−1
2 , R2λ). (2.8)

From this we see that the G-orbits are level sets of λ, generically diffeomorphic to SO(3)×S2

(when λ > 0), the only exception being λ = 0, which is diffeomorphic to SO(3). Physically,
the lump corresponding to (R,λ) ∈ SO(3)×R3 has maximum energy density at −λ/λ ∈ S2,
sharpness proportional to λ and internal orientation R. The λ = 0 lumps have uniform energy
density.

The following explicit characterization ofG invariant kähler metrics on Rat1 was established
in [37] (see [3] for an alternative viewpoint, exploiting more directly the covering SL(2,C) →
Rat1):

Proposition 1 Let γ be a SO(3)× SO(3) invariant kähler metric on Rat1. Then

γ = A1 dλ · dλ+ A2(λ · dλ)2 + A3 σ · σ + A4(λ · σ)2 + A1λ · (σ × dλ), (2.9)

where A1, . . . , A4 are smooth functions of λ only, all determined from the single function
A1 = A(λ) by the relations

A2 =
A(λ)

1 + λ2
+
A′(λ)

λ
, A3 =

1

4
(1 + 2λ2)A(λ), A4 =

1

4λ
(1 + λ2)A′(λ). (2.10)

Here σ1, σ2, σ3 are the left invariant one forms on SO(3) dual to the basis { i
2
τa : a = 1, 2, 3} for

su(2) ∼= so(3), × and · denote the vector and scalar product on R3 respectively and juxtaposition
of one-forms denotes symmetrized tensor product.

So symmetries and the kähler property determine the metric up to a single function A(λ),
which we may think of as the squared length of the vector ∂/∂λ1 at the point (I3, (0, 0, λ)) ∈
SO(3)× R3, corresponding to the rational map

W (z) = µz, µ =
Λ + λ

Λ− λ
. (2.11)
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For the L2 metric, one finds that

A =
32πµ[µ4 − 4µ2 log µ− 1]

(µ2 − 1)3
. (2.12)

It follows from these formulae that (Rat1, γ) has finite diameter and volume (163π6/6 accord-
ing to Baptista [3]), is Ricci positive and has unbounded scalar and holomorphic sectional
curvatures. Examining the large λ behaviour of γ, one finds that the boundary at infinity of
Rat1 is S

2×S2. Geodesic flow in (Rat1, γ) was studied in detail in [36, 14], and turns out to be
surprisingly complicated given the homogeneity and isotropy of physical space. In particular,
lumps generically do not travel along great circles in S2.

It is important to realize that any kähler metric on Rat1 invariant under the SO(3)×SO(3)
action must have the structure of Proposition 1 for some function A(λ). There is one other
natural metric on Rat1 which we will have reason to consider. By identifying a rational map
with the projective equivalence class of its coefficients, we may think of Rat1 as an open subset
of CP 3,

Rat1 →֒ CP 3,
a1z + a2
a3z + a4

7→ [a1, a2, a3, a4]. (2.13)

We equip CP 3 with the Fubini-Study metric of constant holomorphic sectional curvature 4,
whence Rat1 inherits a kähler metric, which we shall also call the Fubini-Study metric γFS.
It is not hard to show [37] that γFS is SO(3)× SO(3) invariant, and so has the structure of
Proposition 1. One finds that the coefficient function is

AFS =
2µ

1 + µ2
=

1

2λ2 + 1
. (2.14)

Finally, given any SO(3)× SO(3) invariant kähler metric on Rat1, it is convenient to define
a second metric coefficient function, the squared length at ([I2], (0, 0, λ)) of θ3, where θ1, θ2, θ3
are the left-invariant vector fields on SO(3) dual to σ1, σ2, σ3. This turns out to be

B =
1

4
(λ2 + Λ2)A+

1

4
λΛ2A′. (2.15)

For the L2 and Fubini-Study metrics one finds, respectively,

B =
32πµ2

(µ2 − 1)3
[(µ2 + 1) logµ− µ2 + 1],

BFS =
1

4(λ2 + Λ2)2
=

1

4(2λ2 + 1)2
. (2.16)

3 The Laplacian on Rat1

We begin the computation of the Laplacian on functions on Rat1 by proving a lemma which
generalizes the well-known expression for △ in local coordinates.

6



Lemma 2 Let (Mm, g) be a Riemannian manifold of dimension m, {Xi} be a local frame on
M , {νi} be the associated coframe, and {µi} be the associated basis for Λm−1M , that is,

µ1 = ν2 ∧ ν3 ∧ · · · ∧ νm, µ2 = ν1 ∧ ν3 ∧ · · · ∧ νm, · · · , µm = ν1 ∧ ν2 ∧ · · · ∧ νm−1.

If all the (m− 1)-forms µi are closed, then the Laplacian on functions is

△f = − 1√
|g|

∑

i,j

Xi[
√

|g|ĝ(νi, νj)Xj [f ]],

where ĝ is the inverse metric and |g| = det(g..).

Proof: We use the summation convention on repeated indices, and define gij = ĝ(νi, νj). The
Laplacian on functions is △ = − ∗ d ∗ d, where ∗ denotes the Hodge isomorphism, so

△f = − ∗ d(Xi[f ] ∗ νi) = − ∗ d(Xi[f ]

√
|g|

(m− 1)!
gijǫji2i3···imνi2 ∧ · · · ∧ νim)

= − ∗Xk[Xi[f ]
√
|g|gij] ǫji2i3···im

(m− 1)!
νk ∧ νi2 ∧ · · · ∧ νim

= − ∗Xj[Xi[f ]
√
|g|gij]ν1 ∧ ν2 ∧ · · · ∧ νm,

where we have used d(νi2 ∧ · · · ∧ νim) = 0. Now the volume form is vol =
√
|g|ν1 ∧ · · · ∧ νm

and ∗vol = 1, so

△f = −Xj [Xi[f ]
√

|g|gij] 1√
|g|

as claimed. ✷

Note that any local coordinate basis Xi = ∂/∂xi satisfies the conditions automatically,
and that the formula for △ reduces to the usual expression in this case. For our purposes it
is convenient to use the (global) frame {∂a, θa : a = 1, 2, 3} on Rat1, where ∂a = ∂/∂λa and
θa are the left-invariant vector fields on SO(3) dual to σa. We thus require an expression for
the inverse metric γ̂ relative to this frame.

Proposition 3 Let γ be a SO(3)× SO(3) invariant kähler metric on Rat1 determined, as in
Proposition 1, by the function A(λ). Then the inverse metric γ̂ is

γ̂ = C1∂ · ∂ + C2(λ · ∂)2 + C3θ · θ + C4(λ · θ)2 + C5λ · (θ × ∂) (3.1)

where C1, . . . , C5 are smooth functions of λ alone satisfying

C1 =
Λ2 + λ2

Λ2A
, C1 + λ2C2 =

Λ2

4B
, C3 =

4

Λ2A
, C3 + λ2C4 =

1

B
, C5 = C3.

Here ∂ = (∂/∂λ1, ∂/∂λ2, ∂/∂λ3), θ = (θ1, θ2, θ3), juxtaposition of vector fields denotes sym-
metrized tensor product, and B is determined by A as in equation (2.15).
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Proof: The same symmetry argument used to prove Proposition 1 (Proposition 3.1 of [37])
shows that every invariant symmetric (2, 0) tensor is of the above form, with C1, . . . , C5 some
functions of λ only. The formulae for C1, . . . , C5 result from explicit computation of ‖dλa‖2,
‖σa‖2 and 〈dλa, σb〉 a, b = 1, 2, 3, at the point ([I], (0, 0, λ)) for general λ, using the unitary
frame {ea, Jea : a = 1, 2, 3} introduced in section 4.1 of [37]. For example, at ([I], (0, 0, λ)),

‖σ3‖2 = C3 + λ2C4 =

3∑

a=1

(σ3(ea)
2 + σ3(Jea)

2) = σ3(Je3)
2 =

1

B
.

✷

Proposition 4 Let γ be a SO(3)× SO(3) invariant kähler metric on Rat1 determined as in
Proposition 1 by the function A(λ). Then the Laplacian on (Rat1, γ) is

△f = − 4

Λ2A

{
θ · θf + λ · (∂ × θ)f − 1

λ2

[
1− Λ2A

4B

]
(λ · θ)2f

}

− 1

Λλ2A2B

∂

∂λ

(
λ2Λ3A2

4

∂f

∂λ

)
− Λ2 + λ2

λ2Λ2A
(λ× ∂) · (λ× ∂)f. (3.2)

Proof: We work with the frame {∂a, θa : a = 1, 2, 3}. Note that d(dλa) = 0 and

dσ1 = σ2 ∧ σ3, dσ2 = σ3 ∧ σ1, dσ3 = σ1 ∧ σ2,

so any wedge product of five of these one forms is closed. Hence this frame satisfies the
conditions of Lemma 2 which, with Proposition 3, immediately gives

△f = − 1√
|γ|

{
∂ · (

√
|γ|(C1∂f + C2λ(λ · ∂[f ]))) + ∂ · (−

√
|γ|C5

2
λ× θ[f ])

+θ · (
√

|γ|C5

2
λ× ∂[f ]) + θ · (

√
|γ|(C3θ[f ] + C4λ(λ · θ[f ])))

}
. (3.3)

Now the volume form on (Rat1, γ) is [37]

vol =
Λ

2
A2Bdλ1 ∧ dλ2 ∧ dλ3 ∧ σ1 ∧ σ2 ∧ σ3, (3.4)

whence one sees that
√

|γ| = Λ
2
A2B for this frame. Substituting this, and the formulae for

C1, . . . , C5 (Proposition 3) into equation (3.3) yields, after some straightforward manipulation,
the formula claimed. ✷

As a check on our formula, we should verify that it is consistent with the SO(3)× SO(3)
symmetry of γ. That is, the operator △ must commute with all Killing vector fields on
(Rat1, γ). There are six independent Killing vector fields on (Rat1, γ), three generating the
left SO(3) action and three generating the right SO(3) action. Recall that the left action
on Rat1

∼= SO(3) × R3 acts by left translation on SO(3) and acts trivially on R3. Now left
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translations on a Lie group are generated by right invariant vector fields. So, let ξa, a = 1, 2, 3,
be the right invariant vector fields on SO(3) coinciding at I with θa. Since the left and right
actions commute, [θa, ξb] = 0 for all a, b so we see immediately that △ as in formula (3.2)
commutes with each ξa. The right action of SO(3) on Rat1

∼= SO(3) × R3 acts by right
translation on SO(3) and by the fundamental representation on R3. Hence the Killing vector
fields generating this action are Xa = θa +Φa where Φa = ǫabcλb∂c. Note that {θa}, {Φa} and
{Xa} each satisfy the angular momentum algebra,

[θa, θb] = −ǫabcθc, [Φa,Φb] = −ǫabcΦc, [Xa, Xb] = −ǫabcXc, (3.5)

and that [θa,Φb] = 0, so

[Xa,X ·X] = [Xa, θ · θ] = [Xa,Φ ·Φ] = 0. (3.6)

Clearly all these vector fields annihilate functions of λ and commute with ∂/∂λ. It follows
that Xa commutes with the first, fourth and fifth terms of (3.2). To deal with the second
term, note that

[Xa,λ · (∂ × θ)] = [Xa, θ ·Φ] =
1

2
[Xa,X ·X − θ · θ −Φ ·Φ] = 0. (3.7)

Finally, Xa commutes with the third term since

[Xa,λ · θ] = [θa + ǫabcλb∂c, λdθd] = λd(−ǫadeθe) + ǫabdλbθd = 0. (3.8)

4 Casimir energy

The dominant term in Moss and Shiiki’s Hamiltonian arising from the degrees of freedom
orthogonal to the moduli space is the Casimir energy C , which is formally given by

C =
1

2

∑

i

ωi, (4.1)

where ωi are the frequencies of oscillation of the normal modes of the static solution. In the
field theory context, the above sum is infinite and divergent, so we must regularize it in some
way. We return to this issue below. First we set about computing the frequencies ωi in the
case of interest, a single CP 1 lump on S2. To achieve this, we will make use of some standard
results in the stability theory of harmonic maps, which we begin by briefly reviewing. This
material is treated in detail in [40, ch. 5].

4.1 The spectrum of the Jacobi operator

Recall that given a map ϕ : (M, g) → (N, h) between Riemannian manifolds, its Dirichlet
energy is

E =
1

2

∫

M

‖dϕ‖2, (4.2)
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and the map is harmonic if it is a critical point of E. This is directly relevant to us since, with
the choice (M, g) = (N, h) = the round sphere of radius 1, E coincides precisely with V , the
CP 1 model’s potential energy functional. Hence, CP 1 lumps are harmonic maps S2 → S2.
Given a harmonic map ϕ : M → N , one defines its Hessian, a symmetric bilinear form on
Γ(ϕ−1TN) (the space of smooth sections of the vector bundle over M whose fibre over p ∈M
is the tangent space Tϕ(p)N), as follows. Let ϕs,t : M → N be a smooth two-parameter
variation of ϕ (so ϕ0,0 = ϕ), with ∂sϕs,t|s=t=0 = X , ∂tϕs,t|s=t=0 = Y ∈ Γ(ϕ−1TN). Then

Hessϕ(X, Y ) =
∂2

∂s ∂t
E(ϕs,t)

∣∣∣∣
s=t=0

. (4.3)

One says that ϕ is stable if Hessϕ(X,X) ≥ 0 for all X . Clearly, if ϕ minimizes E in its
homotopy class, as in our case, it is stable.

Associated with Hessϕ, there is a self-adjoint, elliptic, linear differential operator Jϕ :
Γ(ϕ−1TN) → Γ(ϕ−1TN), which is known as the Jacobi operator and is defined by

Hessϕ(X, Y ) = 〈X,JϕY 〉L2 =

∫

M

h(X,JϕY ). (4.4)

If M is compact, the harmonic map ϕ is stable if and only if the spectrum of Jϕ is non-
negative, and this spectrum is discrete, each eigenvalue having finite multiplicity. Any map
ψ :M → N which is sufficiently close pointwise to a harmonic map ϕ can be uniquely written
ψ = expϕX , where ‖X‖ is pointwise small, and then

E(ψ) = E(ϕ) +
1

2
Hessϕ(X,X) +O(X3) = E(ϕ) +

1

2
〈X,JϕX〉L2 +O(X3), (4.5)

whence it is clear that the eigenvalues of Jϕ are precisely ω2
i , the squared frequencies we

require to compute C .
There is an explicit formula for the Jacobi operator of a general harmonic map ϕ : (M, g) →

(N, h),
Jϕ = △ϕ − Rϕ, (4.6)

where △ϕ is the rough Laplacian on Γ(ϕ−1TN), and Rϕ is a certain section of End(ϕ−1TN)
constructed from the curvature tensor RN on N . Explicitly, given a choice of local orthonormal
frame E1, E2, . . . , Em on M ,

△ϕY = −tr∇ϕ∇ϕY = −
m∑

i=1

{
∇ϕ

Ei
(∇ϕ

Ei
Y )−∇ϕ

∇M
Ei

Ei
Y

}
, (4.7)

RϕY =

m∑

i=1

RN(Y, dϕEi)dϕEi, (4.8)

where ∇M ,∇N are the Levi-Civita connexions of M,N respectively, and ∇ϕ is the pullback
to ϕ−1TN of ∇N . In the case of interest to us, Rϕ is somewhat easier to handle than △ϕ,
owing to the following proposition:
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Proposition 5 Let ϕ : (Mn, g) → (Nn, h) be a weakly conformal mapping between Rieman-
nian manifolds of equal dimension, and (Nn, h) be Einstein with scalar curvature κ (necessarily
constant). Then

Rϕ =
2κ

n2
E Id,

where E = 1
2
‖dϕ‖2 ∈ C∞(M) is the Dirichlet energy density of ϕ.

Proof: Recall that ϕ is weakly conformal if there exists a smooth function f : M → R such
that h(dϕX, dϕY ) = f 2g(X, Y ) for all vector fields X, Y on M . Let E1, . . . , En be a local
orthonormal frame on M . At all points p ∈M where f(p) = 0, dϕ = 0 so the desired equality
holds trivially (both Rϕ and E vanish). At all other points, ‖dϕEi‖2 = 2

n
E > 0 independent

of i and h(dϕEi, dϕEj) = 0 for i 6= j, so

Êi =

√
n

2E dϕEi, i = 1, 2, . . . , n

form an orthonormal basis for Tϕ(p)N . Hence, for all X, Y ∈ Tϕ(p)N ,

h(X,RϕY ) =
n∑

i=1

h(X,RN(Y, dϕEi)dϕEi) =
2E
n

n∑

i=1

h(X,RN (Y, Êi)Êi)

= −2E
n

n∑

i=1

h(Êi, R
N(Y, Êi)X) =

2E
n
Ric(Y,X) =

2E
n

κ

n
h(X, Y ) (4.9)

by a standard symmetry of RN [41, p. 58] and the Einstein property of (N, h). ✷

Note that every ϕ ∈ Rat1 is holomorphic, hence conformal, and the unit two-sphere is Einstein
with κ = 2. Hence

Rϕ = E Id (4.10)

in this case. Thinking of Jϕ as a quantum Hamiltonian acting on “wavefunctions” on the
two-sphere (sections of ϕ−1TN , really), the effect of the curvature term is to add a potential
well equal to minus the classical energy density of the lump. What is this energy density? By
SO(3)×SO(3) invariance, the spectrum of Jϕ can depend only on λ, so it suffices to consider
only the one-parameter family of rational maps

ϕ : z 7→W = µ(λ)z =
Λ + λ

Λ− λ
z (4.11)

corresponding to the curve ([I2], (0, 0, λ)), λ ≥ 0, in PU(2)×R
3. It is convenient to parametrize

these by µ ∈ [1,∞) rather than λ ∈ [0,∞). In terms of the usual polar coordinates on both
domain and codomain spheres, the map (4.11) is

ϕ : (θ, φ) 7→ (fµ(θ), φ), where fµ(θ) = 2 cot−1

(
µ cot

θ

2

)
. (4.12)

The pair E1 = ∂/∂θ, E2 = cosec θ∂/∂φ is orthonormal on S2, whence, by conformality, one
sees that

E = ‖dϕE2‖2 =
sin2 fµ(θ)

sin2 θ
. (4.13)
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We turn now to the explicit computation of the rough Laplacian △ϕ, for ϕ of the form

(4.11). Note that Ẽ1 = E1◦ϕ, Ẽ2 = E2◦ϕ gives an orthonormal pair of sections of ϕ−1TN . Any

section Y of ϕ−1TN can be uniquely written Y = Y1(θ, φ)Ẽ1+Y2(θ, φ)Ẽ2. We seek an expres-
sion for △ϕ as a differential operator acting on the pair of smooth functions (Y1, Y2). In fact,

we can deduce all we need once we know how △ϕ acts on sections of the form a(θ) cosmφẼ1

where m ∈ N. A straightforward but lengthy computation, presented in the appendix, shows
that

△ϕ(a(θ) cosmφẼ1) = (Dma) cosmφẼ1 +Qma sinmφẼ2 (4.14)

where Dm = − d2

dθ2
− cot θ

d

dθ
+
m2 + cos2 fµ

sin2 θ
(4.15)

Qm = 2m
cos fµ
sin2 θ

. (4.16)

Since N is kähler, ∇N commutes with JN , the almost complex structure on N , namely
[∇ϕ, JN ] = 0, and hence [△ϕ, J

N ] = 0 also. So we conclude immediately that

△ϕ(a(θ) cosmφẼ2) = △ϕ(J
Na(θ) cosmφẼ1) = JN△ϕ(a(θ) cosmφẼ1)

= −Qma sinmφẼ1 + (Dma) cosmφẼ2. (4.17)

Consider now the SO(2) action on C∞(S2, S2) given by

ϕ 7→ ϕα = Rα ◦ ϕ ◦R−α where Rα =




cosα − sinα 0
sinα cosα 0
0 0 1


 , α ∈ R. (4.18)

Note that E(ϕα) ≡ E(ϕ) and each of the maps (4.11) is fixed under this SO(2) action. It
follows that Jϕ, and hence, by Proposition 5, △ϕ, commute with the induced action on
Γ(ϕ−1TN),

Y 7→ Rα(Y ) = dRα ◦ Y ◦R−α, (4.19)

or, in terms of polar coordinates,

Rα(Y1(θ, φ)Ẽ1 + Y2(θ, φ)Ẽ2) = Y1(θ, φ− α)Ẽ1 + Y2(θ, φ− α)Ẽ2. (4.20)

Hence

△ϕ(a(θ) sinmφẼ2) = △ϕ(R π
2m
a(θ) cosmφẼ2) = R π

2m
△ϕ(a(θ) cosmφẼ2)

= R π
2m
(−Qma sinmφẼ1 + (Dma) cosmφẼ2)

= Qma cosmφẼ1 + (Dma) sinmφẼ2, (4.21)

and similarly
△ϕ(a(θ) sinmφẼ1) = (Dma) sinmφẼ1 −Qma cosmφẼ2. (4.22)

To summarize, Jϕ leaves each infinite dimensional subspace Im ⊂ Γ(ϕ−1TN), m ∈ N,

Im = {a1(θ) cosmφẼ1+a2(θ) sinmφẼ2+a3(θ) cosmφẼ2+a4(θ) sinmφẼ1 : a ∈ C∞((0, π),R4)}
(4.23)
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invariant, these spaces span Γ(ϕ−1TN), and on Im,

Jϕ




a1
a2
a3
a4


 =




Dm − E Qm 0 0
Qm Dm − E 0 0
0 0 Dm − E −Qm

0 0 −Qm Dm − E







a1
a2
a3
a4


 . (4.24)

This diagonalizes after a simple change of coordinates. Let α1 = a1 + a2, α2 = a3 + a4,
α3 = a1 − a2 and α4 = a3 − a4. Then

Jϕ




α1

α2

α3

α4


 =




Dm +Qm − E 0 0 0
0 Dm +Qm − E 0 0
0 0 Dm −Qm − E 0
0 0 0 Dm −Qm − E







α1

α2

α3

α4


 .

(4.25)
Note that D−m = Dm and Q−m = −Qm, so specJϕ is the union of the spectra of the
Sturm-Liouville operators

Sm = Dm +Qm − E = − d2

dθ2
− cot θ

d

dθ
+ Um(θ), m ∈ Z, (4.26)

where

Um(θ) =
m2 − 1 + 2 cos2 fµ(θ) + 2m cos fµ(θ)

sin2 θ
(4.27)

and each eigenvalue occurs with double multiplicity. In terms of physics, we may think of this
as the energy spectrum for “spin 0” (i.e. φ independent) states of a point particle moving on
S2 in the SO(2) invariant potential well Um(θ). The spectrum of each Sm may be computed
numerically using the shooting method described in [14].

There is one value of µ for which specJϕ may be computed exactly, namely µ = 1.
Here things simplify considerably, because the corresponding rational map is the identity
map S2 → S2. The Jacobi operator for the identity map on a general Riemannian manifold
(Mn, g) was studied in detail by Smith [35]. The key simplification is that one has a canonical
identification Id−1TN ≡ T ∗M , obtained by identifying the section Y of Id−1TN = TM with
the one form ♭ Y = g(Y, ·). This is useful because there is a Weitzenböck formula relating the
rough Laplacian △Id to the Hodge Laplacian △ on one-forms [40, p. 161]

△IdY = ♯ (△ ♭ Y − Ric(Y, ·)). (4.28)

In the case where Mn is Einstein, with (constant) scalar curvature κ,

♯Ric(Y, ·) ≡ κ

n
Y, (4.29)

which together with Proposition 5 and the observation that E = n
2
, constant, for Id, gives the

following formula for JId on an Einstein manifold, originally due to Smith,

JId = ♯△ ♭− 2κ

n
. (4.30)
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In our case, n = κ = 2, so JId = ♯△ ♭ − 2, that is, the spectrum of Jϕ in the special case
µ = 1 is the spectrum of the Hodge Laplacian on one-forms on S2, shifted down by 2. This,
in turn, can be related to the spectrum of the Laplacian on functions on S2, as follows.

Let Ωp denote the space of smooth p-forms on S2, and δ : Ωp → Ωp−1 denote the coderiva-
tive, so that the Hodge Laplacian is △ = δd + dδ. Every one-form on S2 has a unique Hodge
decomposition

Y1 = dY0 + δY2 (4.31)

into exact and coexact components (the harmonic component vanishes as H1(S2) = 0). Now
dΩ0 and δΩ2 are L2 orthogonal subspaces of Ω1 and [△, d] = [△, δ] = 0, so the spectral
problem for △Ω1

decomposes into two sub-problems, for △|dΩ0
and △|δΩ2

. Since Y1 is coexact
if and only if ∗Y1 is exact, and ∗ : Ω1 → Ω1 is a L2 isometry, the spectra of △|dΩ0

and △|δΩ2

coincide. Hence spec△Ω1
is spec△|dΩ0

with double multiplicity. In fact,

spec△|dΩ0
= spec△Ω0

\{0}. (4.32)

To see this, let ν ∈ spec△Ω0
and Y0 be the corresponding eigenfunction. Then

△dY0 = d△Y0 = dνY0 = νdY0 (4.33)

so if dY0 6= 0 (that is, ν 6= 0), then ν ∈ spec△|dΩ0
. Conversely, let ν ∈ spec△|dΩ0

and dY0 be
the corresponding eigenform. Then ν 6= 0 (since there is no harmonic one-form on S2), so

0 = △dY0 − νdY0 = d(△Y0 − νY0)

⇒ △Y0 − νY0 = c, constant

⇒ △Y ′
0 − νY ′

0 = 0, where Y ′
0 = Y0 +

c
ν

(4.34)

and hence ν ∈ spec△Ω0
. The spectrum of △Ω0

is well known.
We conclude that, at µ = 1 (equivalently λ = 0),

specJϕ = {ℓ(ℓ+ 1)− 2 : ℓ ∈ Z
+}

multiplicity(ℓ(ℓ+ 1)− 2) = 4ℓ+ 2. (4.35)

Since we know the eigenvalues (and eigensections) of Jϕ at λ = 0, we can use these as seed data
for the numerical shooting method, starting at λ = 0 and increasing λ in small steps. In this
way we can numerically construct curves ω2

i (λ) showing how the different eigenvalues vary with
lump sharpness λ. Figure 1 shows such curves for the lowest 48 eigenvalues. Recall that the
eigenvalue 0 has multiplicity 6 (the dimension of the moduli space), and that other eigenvalues
always have multiplicity (at least) 2 due to the symmetry under JN (or, equivalently, due to
the block structure of Jϕ on Im).

It is interesting to examine the λ → ∞ behaviour of ω2
i (λ). The pointwise limit of ϕ :

S2 → S2 as λ→ ∞ is

ϕ∞(p) =

{
(0, 0, 1) p 6= (0, 0,−1)
(0, 0,−1) p = (0, 0,−1)

(4.36)

that is, ϕ∞ is constant almost everywhere. A sensible guess for the limiting spectrum would,
therefore, be the spectrum of the Jacobi operator at a constant map, which is known to coincide
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Figure 1: The dependence of the eigenvalues of the Jacobi operator Jϕ on the lump sharpness
λ. Note that the eigenvalues interpolate between ℓ(ℓ+ 1)− 2, ℓ ∈ Z

+, at λ = 0 and ℓ(ℓ+ 1),
ℓ ∈ N as λ→ ∞.

with n copies of the spectrum of the Laplacian on functions, where n is the dimension of the
codomain [40, p160]. In this case

specJconst = {ℓ(ℓ+ 1) : ℓ ∈ N}
multiplicity(ℓ(ℓ+ 1)) = 4ℓ+ 2. (4.37)

The numerics suggest that this guess for the limiting spectrum is very nearly correct. Specif-
ically, the eigenvalues do tend, as λ → ∞ to eigenvalues of Jconst, and, apart from the
eigenvalues 0 and 2, those eigenvalues tending to ℓ(ℓ + 1) have total multiplicity 4ℓ + 2. So
the guess is wrong only in that it predicts the multiplicity of the limiting eigenvalue 0 to be
2 rather than 6 (as it must be given the dimension of Rat1) and the multiplicity of 2 to be 6
rather than 4 (as found numerically).

4.2 The regularized Casimir energy

Having computed specJϕ, we must now try to make sense of the Casimir energy C (λ) in (4.1)
which, as it stands, is divergent. It is conventional to reset the zero of potential energy so that
the total zero-point energy of the vacuum is 0. For our purposes, ϕ∞ is (almost everywhere)
the vacuum, so it is convenient to define

Ck(λ) =
1

2

k∑

i=1

(ωi(λ)− ωi(∞)), (4.38)
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where the eigenvalues ωi(λ)
2 > 0 are arranged in such a way that ωi(0)

2 is nondecreasing.
One option would be to renormalize the spectrum (4.38) numerically, using for example

the heat kernel approach. Here, we will employ a different semi-analytical approach. We first
discuss the finite sums Ck for special values of k and then describe how we regularize the
diverging sum as k → ∞.We choose k = 10, k = 24 and k = 42, which include the lowest 1, 2
and 3 eigenvalues of JId respectively. Note that, since we have eigenvalue crossings in figure 1,
this amounts to the lowest k normal modes at λ = 0, but not at large λ (where the eigenvalue
ordering has changed). If we were to define Ck(λ) as the sum of the frequencies of the lowest
k normal modes at each λ, the function Ck would not be smooth (it would have corners where
eigenvalues cross). In effect, we are making a large but finite-dimensional approximation to
the quantum field theory, in which the wavefunction is a function on a vector bundle over
Rat1, whose fibre over ϕ is a union of low-lying eigenspaces of Jϕ. We are choosing these
eigenspaces so that they vary smoothly over Rat1. The price for this is that they are, towards
the boundary of Rat1, not quite the lowest energy eigenspaces available up to dimension k.
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Figure 2: The one-lump Casimir energy as a function of lump sharpness λ for three different
cut-offs: solid curve C10(λ), dashed curve 1

2
C24(λ), dotted curve 1

3
C42(λ), where Ck is defined in

(4.38). The values k = 10, k = 24 and k = 42 correspond to the lowest 1, 2, and 3 eivenvalues
of JId, respectively.

Plots of C10, C24 and C42 are presented in figure 2. The curves for C24 and C42 have been
rescaled vertically, by a factor of 1

2
and 1

3
respectively, to make comparison with C10 easier.

Note that these three functions are qualitatively very similar. In fact, the Casimir curves C10,
C24 and C42 are approximately self-similar up to a factor which diverges as k → ∞. We have
opted to use the self-similarity and regularize the diverging factor (the depth of the well at
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λ = 0). So we define the approximate renormalized Casimir energy C (λ) to be

C (λ) = C∗
C10(λ)

|C10(0)|
(4.39)

where C∗ is the renormalized Casimir energy of the λ = 0 lump. This can be computed exactly
using zeta function regularization, because, as we have seen the spectra of the Jacobi operator
for the identify map (λ = 0 lump) and the constant map (the vacuum) are known exactly.

4.3 Zeta function regularization

For λ = 0, the spectrum of the Jacobi operator is known explicitly, namely ω2
0 = 0 with

multiplicity µ0 = 6 and ω2
l = l(l+3) with multiplicity µl = 4l+6 for l = 1, 2, . . . This enables

us to calculate the Casimir energy using zeta function regularization. The key idea is to write
down the corresponding zeta function

ζ(s) =

∞∑

l=1

µl

(
ω2
l

)−s
, (4.40)

leaving out the zero modes. The zeta function (4.40) is absolutely convergent as long as the
real part of s is sufficiently large. In this region, ζ(s) can be viewed as an analytic function
of s. We are interested in the Casimir energy which corresponds to the value s = −1

2
. In this

case, the formal sum in (4.40) is divergent, however, ζ(s) defined as analytic continuation is
well-defined. It is convenient to rewrite ζ(s) as the following sum:

ζ(s) =

∞∑

l=1

2l(l(l + 3))−s +

∞∑

l=1

2(l + 3)(l(l + 3))−s (4.41)

then we can use formula (5.8) in [9, p. 122] to obtain

ζ(−1
2
) = −2.373.

The corresponding calculation for the vacuum, whose spectrum is ω2
l = l(l+1) with multiplicity

µl = 4l + 2, leads to the zeta function

ζ(s) =

∞∑

l=1

2l(l(l + 1))−s +

∞∑

l=1

2(l + 1)(l(l + 1))−s (4.42)

and yields
ζvac(−1

2
) = −0.530.

See also equation (5.34) in [9, p. 126]. Hence, the Casimir energy of the λ = 0 lump on the
unit two-sphere can be evaluated using

1

2

(
ζ(−1

2
)− ζvac(−1

2
)
)
= −0.921.

17



Hence
C∗ = |C (0)| = 0.921.

This is the energy scale we used to set the renormalized energy scale for our numerically
generated Casimir energy function C (λ) in (4.39).

Our approximation to the Casimir energy C (λ) is now given by the rescaled and shifted
curve C10(λ) in figure 2. It is non-singular and appears to be smooth. It is worth summarizing
the approximations involved. Our calculation relies on a conjectured self-similarity of the
curves in figure 2. We also assume that we can neglect the effects of crossing modes. In
particular, we assume that the zeta-function regularization can be performed pointwise when
we regularize the Casimir energy at λ = 0 and λ = ∞. Furthermore, we assume that the
C (λ) → 0 as λ → 0 because the lumps converge almost everywhere to the vacuum in that
limit.

The obvious alternative to our approach, namely a numerical evaluation using heat kernel
or zeta function regularization as in [29, 27], is beyond the scope of this paper.

5 The energy spectra

In the following, we describe how to calculate the spectrum of the Laplacian (3.2). In order
to make use of the physics literature on this topic we rewrite the Laplacian using angular
momentum operators. Note that the operators J = −iθ, L = −iλ × ∂, T = J + L and
K = −iξ all satisfy the canonical commutation relations for angular momenta, namely,

[X1, X2] = iX3, X = J,K,L,T

and cyclic permutations. Recall that iK generates the left SO(3) action, on the target S2,
and iT generates the right SO(3) action, on the physical S2, so we refer to these operators
as isospin and spin respectively. Making use of these operators, one sees that the Laplacian
(3.2) is

△ψ = − 1

Λλ2A2B

∂

∂λ

(
λ2Λ3A2

4

∂ψ

∂λ

)
+

1

λ2Λ2A
L2ψ

+
2

Λ2A

{
J2ψ +T2ψ − 2

λ2

[
1− Λ2A

4B

]
(λ ·T)2ψ

}
. (5.1)

Here, we replaced the L · J term using the convenient operator identity

2L · J = T2 − L2 − J2. (5.2)

We have already shown that △ commutes with T and K, as it must, by SO(3) × SO(3)
invariance. In fact, the operators △, |T|2, T3, |K|2, K3, P , where P : λλλ 7→ −λλλ is the parity
operator, all mutually commute, so we can seek simultaneous eigenstates of these six operators.
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5.1 Spin-isospin interchange symmetry

Let t(t+ 1) and k(k+1) be the eigenvalues of |T|2 and |K|2. It is a somewhat surprising fact
that the spectrum of △ is invariant under interchange of t and k. Even more surprising is
that this remains true even if we give the physical and target spheres different radii. The key
to seeing this is the following isometry of any SO(3)×SO(3) invariant kähler metric on Rat1.

Proposition 6 Identify Rat1
∼= SO(3)×R

3 with TSO(3) via (R,λ) ≡ (λ ·θ)(R) ∈ TRSO(3).
The mapping f : SO(3) → SO(3), f(R) = R−1 induces a mapping df : TSO(3) → TSO(3).
Then df is an isometry of any SO(3)× SO(3) invariant kähler metric on TSO(3).

Proof: The identification Rat1 ≡ TSO(3) amounts to thinking of λ as a vector in the Lie
algebra so(3) (skew 3 × 3 real matrices) and identifying TRSO(3) with so(3) = TeSO(3) by
left translation. Hence, the map in question is

df : (R,λ) 7→ (R−1,−AdRλ).

Let q(t) = (R(t),λ(t)) be a curve in Rat1 with q̇(0) = (R(0)Ω, v), Ω, v ∈ so(3). Then, with
respect to the SO(3)× SO(3) invariant kähler metric determined by the functions Ai(λ), as
in Proposition 1,

‖q̇(0)‖2 = A1|v|2 + A2(λ · v)2 + A3|Ω|2 + A4(λ ·Ω)2 + A1v · (λ×Ω).

The image of this curve under df is q̃(t) = (R−1(t),−R(t)λ(t)R−1(t)), which has ˙̃q(0) =

(R−1(0)Ω̃, ṽ), where

(Ω̃, ṽ) = −(AdRΩ, AdR(v − [λ,Ω]so(3))).

Recalling that the Lie bracket on so(3) coincides with minus the vector product on R3 under
the natural identification so(3) ≡ R3, and the adjoint action of SO(3) on so(3) coincides with
the fundamental action on R3, we find that

‖ ˙̃q(0)‖2 = A1|v + λ×Ω|2 + A2(λ · v)2 + A3|Ω|2 + A4(λ ·Ω)2 −A1(v + λ×Ω) · (λ×Ω).

= ‖q̇(0)‖2.

Hence df is an isometry, as claimed. ✷

Proposition 7 Given E ∈ R and k, t ∈ N, denote by XE,k,t the simultaneous eigenspace of

H = 1
2
△+ V, |K|2, |T|2

with eigenvalues E, k(k+1) and t(t+1), where V : Rat1 → R is any SO(3)×SO(3) invariant
potential. Then XE,k,t and XE,t,k have equal dimension.

Proof: Under the identification Rat1 ≡ TSO(3), the left and right actions of SO(3) on Rat1

coincide with the natural left and right actions of SO(3) on TSO(3). Denote by df ∗ the induced
map on L2(TSO(3),C), df ∗ψ = ψ ◦ df . Then, since df is an isometry and preserves the length
of λ, Hdf ∗ = df ∗H . Furthermore, df interchanges the left and right SO(3) actions on TSO(3),
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so Kdf ∗ = −df ∗T and Tdf ∗ = −df ∗K. Hence, df ∗ : XE,k,t → XE,t,k and df ∗ : XE,t,k → XE,k,t

for all E, k, t. Now df 2 = Id, so (df ∗)2 = Id, and hence df ∗ is invertible, so the eigenspaces
XE,k,t and XE,t,k are isomorphic. ✷

Note that this k, t interchange symmetry holds for any invariant kähler metric on Rat1,
so is not special to the case where the domain and target two-spheres have equal radius.
Also note that it relies heavily on the kähler property of the metric, and does not follow from
SO(3)×SO(3) invariance alone (or, indeed, just invariance and hermiticity). This is a “hidden”
symmetry which one cannot see directly from the field theory. It is an interesting question
whether a direct physical argument can be given to explain this symmetry. A construction
involving a supersymmetric extension of the model would be a natural candidate.

5.2 Reduction to a Sturm-Liouville problem

The wavefunction is a function ψ : SO(3) × R3 → C. According to the Peter-Weyl theo-
rem [16], the matrix elements of all irreducible unitary representations of the group SO(3)
form an orthonormal basis for L2(SO(3),C). Recall that such representations are labelled
by k ∈ {0, 1, 2, . . .}, and that the matrix elements of the k representation are functions

π
(k)
j3,k3

: SO(3) → C where −k ≤ j3, k3 ≤ k. We have chosen the symbol k to label the
representations because

|K|2π(k)
j3,k3

= |J|2π(k)
j3,k3

= k(k + 1)π
(k)
j3,k3

. (5.3)

Further, we may choose the basis for C2k+1 so that

K3π
(k)
j3,k3

= k3π
(k)
j3,k3

, J3π
(k)
j3,k3

= j3π
(k)
j3,k3

, (5.4)

which is why we have labelled the matrix elements with j3, k3. For the R
3 dependence of ψ we

use spherical polar coordinates and expand the angular dependence in spherical harmonics.
Hence we may express the wavefunction as follows,

ψ =

∞∑

k=0

∞∑

l=0

k∑

j3=−k

k∑

k3=−k

l∑

l3=−l

ak,lj3,k3,l3
(λ) |k, l, j3, k3, l3 〉, (5.5)

where
|k, l, j3, k3, l3 〉 = π

(k)
j3,k3

Yl,l3, (5.6)

and Yl,l3 : S
2 → C denote spherical harmonics.

Recall that H, |K|2, K3, |T|2, T3 are mutually commuting, so we may solve the eigenvalue
problem for H on each simultaneous eigenspace of |K|2, K3, |T|2, T3 separately. Clearly, H
is independent of k3 and t3 so we may, and henceforth will, without loss of generality, set
k3 = t3 = 0, remembering to multiply all degeneracies by (2k + 1)(2t + 1) to account for the
other values of (k3, t3). Furthermore, by Proposition 7 we may, without loss of generality,
assume that k ≤ t, doubling the multiplicity if k < t. Recall that T = J + L and that J and
L satisfy the angular momentum algebra. Hence a basis {|k, t, l 〉 : |k − t| ≤ l ≤ k + t} for
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the (k, 0, t, 0) eigenspace can be constructed, using Clebsch-Gordon coefficients, on which the
operators |J|2 = |K|2, |T|2, |L|2 act naturally

|J|2 |k, t, l〉 = k(k + 1) |k, t, l 〉 (5.7)

|T|2 |k, t, l〉 = t(t + 1) |k, t, l 〉 (5.8)

|L|2 |k, t, l〉 = l(l + 1) |k, t, l 〉, (5.9)

see Appendix B for details.
By expanding the wavefunction as ψ =

∑k+t
l=|k−t| al(λ) |k, t, l 〉, we may express the Hamil-

tonian H = 1
2
△+ V as a m×m matrix of differential operators acting on the vector function

a : [0,∞) → Cm, where m = 2min(k, t) + 1. Its structure is

Ha = −p1(λ)
d

dλ

(
p2(λ)

da

dλ

)
+p3(λ)M1a+p4(λ)(k(k+1)+t(t+1))a+p5(λ)M2a+V (λ)a (5.10)

where pi(λ) are rather complicated but explicitly known functions of λ (see Proposition 4)
and M1, M2 are m×m matrices corresponding to L2 and (λ ·T)2 respectively. By our choice
of basis, M1 is diagonal and has entries l(l + 1) with l running from |k − t| (top left) to k + t
(bottom right). The matrix M2 corresponding to operator (λ · T)2 is the only non-diagonal
term in the Hamiltonian and is discussed in more detail in appendix B. It mixes states of
different l, which differ by 2. This leads to a natural chess board structure. Hence, by a
reordering of the basis vectors, the operator can be written in block diagonal form with one
block corresponding to the states with even l and the other block to odd l. These blocks
correspond to the decompostion of the (k, 0, t, 0) eigenspace into P = +1 (even l) and P = −1
(odd l) parity eigenspaces noting that PYl,m = (−1)lYl,m. In summary, for fixed (k, t), the
eigenvalue problem for any Hamiltonian of the form H = 1

2
△ + V (λ) reduces to a matrix-

valued Sturm-Liouville problem on [0,∞) of dimension m = 2min(k, t) + 1.

5.3 Boundary conditions

We can now address the eigenvalue equations

Hia = Ea, (5.11)

where E is the energy eigenvalue, and the Hamiltonians H0, H1 and H2 are given by (1.3). As
just explained, the spectral problem reduces to a sequence of matrix-valued Sturm-Liouville
problems indexed by t ∈ {0, 1, 2, . . .} and k ∈ {0, 1, . . . , t}, where each subproblem has dimen-
sion 2min(k, t)+ 1. In order to calculate the spectrum of the Hamiltonians H0, H1 and H2 we
have to derive not only the relevant differential equations but also the appropriate boundary
conditions. For many important examples in mathematical physics, the boundary conditions
are determined solely by the requirement that the wavefunction be L2 finite. However, in
our case, L2 finiteness is not always sufficient, and we have to apply the theory of singular
Sturm-Liouville equations, following [30].

The asymptotic behaviour of the L2 metric on Rat1 can be obtained by direct calculation:

A(λ) ∼ 32π
3

as λ→ 0, A(λ) ∼ 8π
λ2 as λ→ ∞,

B(λ) ∼ 8π
3

as λ→ 0, B(λ) ∼ 4π log λ
λ4 as λ→ ∞.

(5.12)

21



Using the above limits, we obtain the leading order equation for (H0 −E)f = 0 as λ→ ∞,

∂2f

∂λ2
+

1

λ

∂f

∂λ
− 4

λ2

(
λ̂ ·T

)2

f = 0, with λ̂ =
λ

λ
, (5.13)

and the leading order equation for (H0 − E)f = 0 as λ→ 0,

∂2f

∂λ2
+

2

λ

∂f

∂λ
− l(l + 1)

λ2
f = 0. (5.14)

For λ → 0 equation (5.11) for H0 has a regular singular point. The asymptotic form of the
solutions can be derived from (5.14) and is given by1

f(λ) = c1λ
l + c2λ

−l−1. (5.15)

Note that the leading order asymptotic behaviour is independent of the energy eigenvalue E.
We are interested in solutions that are L2 finite which leads to the condition

∫
f 2vol <∞. (5.16)

Using polar coordinates for (3.4) we obtain the two asymptotic behaviours,

f 2vol ∼ c̃1λ
2l+2 and f 2vol ∼ c̃2λ

−2l,

for suitable constants c̃1 and c̃2. Hence l > 0 corresponds to the limit-point case, since only the
first solution is L2 finite, see e.g. [30] for further details. However, for l = 0 the situation is
slightly more subtle. Both asymptotic solutions are L2 finite. This is known as the limit-circle
case.2 The Hamiltonians H1, H2 lead to the same asymptotic behaviour since the curvature
and Casimir energy are finite as λ→ 0.

For λ→ ∞ it is convenient to analyse the boundary conditions in a different basis so that
the operator (λ̂ ·T) is diagonal, (

λ̂ ·T
)2

f = p2f,

where the integer k satisfies −min(k, t) ≤ p ≤ min(k, t), see appendix B. Then the asymptotic
solution follows from (5.13) and is given by

f(λ) = c1λ
−2p + c2λ

2p, (5.17)

for p 6= 0 and
f(λ) = c1 + c2 log(λ), (5.18)

for p = 0. Again the leading order behaviour is independent of the energy eigenvalue E.
Both H1 and H2 contain the scalar curvature function κ(λ) which is known to diverge to

infinity as λ→ ∞. In fact, using the formula obtained in [37], and accounting for the change

1Higher order terms in the expansions for λ→ 0 and λ→ ∞ have been calculated in [24] for H0 with k = 0.
2The same subtlety occurs when solving the Schrödinger equation for the hydrogen atom in spherical polar

coordinates.
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in normalizations (recall we are giving the domain and target spheres unit radius), we find the
asymptotic formula

κ(λ) ∼ 1

16π

λ4

log λ
as λ→ ∞. (5.19)

This adds a term to (5.13), namely,

∂2f

∂λ2
+

1

λ

∂f

∂λ
− 1

λ2

(
4
(
λ̂ ·T

)2

+
1

2 log(λ)2

)
f = 0. (5.20)

For p 6= 0 we can solve (5.20) in terms of modified Bessel functions

f(λ) = c1
√

log λK√
3/2 (2p log(λ)) + c2

√
log λI√3/2 (2p log(λ)) . (5.21)

With the help of asymptotic expansions, see e.g. [1], it can be shown that the leading order
is identical to (5.17). For p = 0 we obtain

f(λ) = c1 log(λ)
1

2
− 1

2

√
3 + c2 log(λ)

1

2
+ 1

2

√
3. (5.22)

Since the Casimir energy is bounded, the asymptotic behaviour of H2 as λ → ∞ is the same
as H1.

As λ→ ∞ the L2 finite condition (5.16) again leads to two asymptotic behaviours,

f 2vol ∼ c̃1 log(λ)λ
−2p−5 and f 2vol ∼ c̃2 log(λ)λ

2p−5,

for suitable constants c̃1 and c̃2 in the case p > 0. For p = 0, the curvature term has an
influence on the asymptotic behaviour. For H0, we obtain

f 2vol ∼ c̃1 log(λ)λ
−5 and f 2vol ∼ c̃2 log(λ)

2λ−5,

whereas for H1 and H2 the asymptotic behaviour is

f 2vol ∼ c̃1 log(λ)
3

2
−

√
3

2 λ−5 and f 2vol ∼ c̃2 log(λ)
3

2
+

√
3

2 λ−5.

Hence for p < 2 both solutions lead to L2 finite solutions, resulting in a limit-circle case.
In summary, for all values of k and t the boundary conditions are either of limit-circle

or of limit-point type. Furthermore, both end points are non-oscillatory and independent of
the energy eigenvalue E. This allows us to apply theorem 7.5 in [30] which ensures that the
spectrum is purely discrete, bounded below and unbounded above.

If limit-circle endpoints are present, a Sturm-Liouville problem is not self-adjoint unless
boundary conditions are imposed. For a non-oscillatory endpoint a there is always one solu-
tion which is “small”, known as the subdominant solution. More precisely, the subdominant
solution u(λ), unique up to a scalar factor, satisfies

lim
λ→a

u(λ)

v(λ)
= 0, (5.23)

where v(λ) is any linearly independent solution, see theorem 7.15(i) in [30]. In our case, the
subdominant solution is the non-singular solution, e.g. c1λ

l as λ → 0. A natural boundary
condition is defined by the subdominance condition, i.e. always taking the non-singular solu-
tion. Theorem 7.21 in [30] then guarantees that the subdominance condition defines a valid
self-adjoint problem known as the Friedrichs extension.
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5.4 Numerical results

In the following, we briefly sketch our numerical scheme for H0 with k and t fixed. The
equations for H1 and H2 require minor, but straightforward modifications. We are using a
multi-component shooting method which solves a collection of initial value problems (for the
eigenvalue equation at fixed E) numerically with a standard adaptive Runge-Kutta method.
The first initial value problem has initial values at λ0 ≈ 0 and the solution a(λ) of the
differential equation (5.11) is evaluated at a matching point λm ≫ λ0. Allowing the initial
data to span the m = 2min(k, t)+1 dimensional space specified by the boundary condition at
0, this produces a 2m×m matrix φ whose columns consist of a(λm) above a

′(λm). The second
initial value problem has initial values at λ∞ ≫ λm and is again evaluated at λm, resulting,
as the initial data span the boundary condition, in a 2m×m matrix η constructed similarly.
By construction, a general solution satisfying the boundary condition at 0 lies, at λm, in the
column span of φ, while a general solution satisfying the boundary condition at ∞ lies, at λm
in the column span of η. Hence, E is an eigenvalue if these spans have nontrivial intersection,
that is, if

d(E) = det(φη) = 0. (5.24)

Having constructed d(E) numerically, we find its roots using a bisection method. Typical
values of our constants are λ0 = 0.001, λm = 3 and λ∞ = 30.

Table 1 shows the lowest energy levels for H0 = 1
2
△ which corresponds to the Laplacian

for the L2 metric, for H1 = 1
2
△ + 1

4
κ which also includes the curvature corrections, and

for H2 = 1
2
△ + 1

4
κ + C which includes curvature corrections and Casimir energy. Energy

levels are rounded to two decimal places. The energy levels are ordered according to their
respective energy, and are labelled by isospin quantum number k, total angular momentum
quantum number t and parity P. Curly brackets indicate that the states (k, t) and (t, k)
have the same energy. States with the same quantum numbers but different energies form
sequences of radially excited states. We have chosen to display levels with an energy not
greater than the second excited (k = 0, t = 0) state, which are 19 energy levels in total. The
columns “degeneracy” give the number of different states with the same energy. For k = t,
the degeneracy is given by (2k+1)2, whereas for k 6= t it is 2(2k+1)(2t+1), where the extra
factor of 2 arises from the (k, t) → (t, k) symmetry of the spectrum.

The spectra of H0 and H1 are remarkably similar. The order of the energy levels remains
the same apart from two exceptions which are marked with a ∗ in table 1 and which will be
discussed in more detail later. The Casimir energy leads to significant changes, nevertheless
the spectrum still shares some similarities. The ground state of H0 has energy E

(0)
0 = 0.00.

The curvature term increases the energy of the ground state of H1 to E
(1)
0 = 0.22, whereas the

renormalised Casimir energy leads to a decrease in the ground state of H2 to E
(2)
0 = −0.41.

In order to compare the energies of the excited states, we shift the spectrum of the ground
states of H1 and H2 to 0.00 and then calculate the relative difference of the corresponding
energy levels. Hence, the relative difference in energy between the nth excited state E

(0)
n of

H0 and the nth excited state E
(1)
n of H1 is given by

E
(0)
n −

(
E

(1)
n − E

(1)
0

)

E
(0)
n

. (5.25)
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H0 =
1
2
△ H1 =

1
2
△+ 1

4
κ H2 =

1
2
△+ 1

4
κ+ C

energy degeneracy {k, t}P energy degeneracy {k, t}P energy degeneracy {k, t}P

0.00 1 {0, 0}+ 0.22 1 {0, 0}+ -0.41 1 {0, 0}+
0.13 6 {0, 1}− 0.38 6 {0, 1}− -0.26∗ 9 {1, 1}+
0.18 9 {1, 1}+ 0.40 9 {1, 1}+ -0.19∗ 6 {0, 1}−
0.29 1 {0, 0}+ 0.53 1 {0, 0}+ -0.12 1 {0, 0}+
0.34 9 {1, 1}+ 0.58 9 {1, 1}+ -0.01∗ 9 {1, 1}−
0.35 10 {0, 2}+ 0.59∗ 9 {1, 1}− 0.00∗ 9 {1, 1}+
0.38 9 {1, 1}− 0.61∗ 10 {0, 2}+ 0.01∗ 25 {2, 2}+
0.40 30 {1, 2}− 0.63 30 {1, 2}− 0.06 30 {1, 2}−
0.49 25 {2, 2}+ 0.70 25 {2, 2}+ 0.06∗ 10 {0, 2}+
0.54 6 {0, 1}− 0.80 6 {0, 1}− 0.15 6 {0, 1}−
0.62 9 {1, 1}+ 0.83 9 {1, 1}+ 0.22 9 {1, 1}+
0.63 30 {1, 2}− 0.87 30 {1, 2}− 0.29 30 {1, 2}−
0.64 14 {0, 3}− 0.88∗ 30 {1, 2}+ 0.32∗ 30 {1, 2}+
0.67 30 {1, 2}+ 0.91∗ 14 {0, 3}− 0.33∗ 25 {2, 2}−
0.68 25 {2, 2}+ 0.93 25 {2, 2}+ 0.34 25 {2, 2}+
0.69 42 {1, 3}+ 0.95 42 {1, 3}+ 0.37∗ 14 {0, 3}−
0.76 25 {2, 2}− 0.96 25 {2, 2}− 0.40∗ 42 {1, 3}+
0.79 70 {2, 3}− 1.01 70 {2, 3}− 0.41∗ 1 {0, 0}+
0.81 1 {0, 0}+ 1.07 1 {0, 0}+ 0.41∗ 49 {3, 3}+

Table 1: This table shows the lowest energy eigenvalues of H0, H1 and H2. Each energy
eigenvalue is labelled with its degeneracy and its quantum numbers k and t and parity P.
Energy eigenvalues marked with a ∗ occur in a different order than their counterpart in the
H0 spectrum.

The relative difference of the {0, 1}− states of H0 and H1 is 15%, and 7.7% for the first excited
{0, 0}+ state. All the remaining states have a relative difference of less than 7%.

As mentioned earlier, some energy levels change order. Therefore, it is useful to calculate
the relative error of states with the same quantum numbers {j, t}P . The first transposition
occurs for the first {0, 2}+ state and the first {1, 1}− state. The relative difference between the
energy of the {0, 2}+ state between H0 and H1 is 10.4%. The second transposition occurs for
the first {0, 3}− and the first even {1, 2}+ state, and the {0, 3}− state has a relative differences
of 8.0%. This leads to the observation that the difference between positive and negative parity
states with the same {k, t} is reduced for H1 compared to H0. Furthermore, H1 seem to favour
states with k ≈ t.

As can be seen in table 1 the spectrum of H2 is shows many transpositions compared to
the spectra of H0 and H1. However, these transpositions occur for states which are close in
energy, and the relative positions of the {0, 0}+ state and the {0, 0}+ excited states remain
almost unchanged. Calculating the relative differences as in formula (5.25) shows that all
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relative differences are less than 24%.

5.5 Changing the radii

It is interesting to consider how our results change if the radii R1, R2 of the domain and target
spheres are altered. We adopt the convention that a tilde signifies the case of general R1, R2

while undecorated variables refer to the case R1 = R2 = 1. It is immediate from (2.4) that
the L2 metric on Ratn scales as γ̃ = R2

1R
2
2γ, and hence, from (3.2), we see that the Laplacian

scales as △̃ = (R1R2)
−2△. Now scalar curvature scales in the same way as the Laplacian

(as can easily be seen, in this case, from the formula for κ in [37], for example). Hence, the

Hamiltonians H0 and H1, scale homogeneously, H̃i = (R1R2)
−2Hi, and so their spectra can be

obtained from table 1 by a simple rescaling. Now the energies shown in this table are quantum
corrections to the classical energy, which, by the Lichnerowicz bound is 4πR2

2. Hence, for H0,
H1, the total energy of the kth energy level is

Ẽtotal
k = 4πR2

2 +
Ek

R2
1R

2
2

(5.26)

where Ek is the eigenvalue of Hi. It is interesting to note that the quantum correction becomes
(naively) dominant in the case of small target space (R2 small).

The behaviour of H2 is more subtle because the Casmir energy scales differently from
the other terms. To see this, we determine how the Jacobi operator for a harmonic map
φ :M → N scales under homotheties of M and N .

Proposition 8 Let ϕ : (Mm, g) → (Nn, h) be harmonic with Jacobi operator J . If g̃ = R2
1 g,

h̃ = R2
2 h, where R1, R2 > 0 are constants, then the Jacobi operator of ϕ as a harmonic map

(M, g̃) → (N, h̃) is

J̃ = R−2
1 J .

Proof: Let ϕs,t :M → N be a smooth two-parameter variation of ϕ = ϕ0,0, with ∂sϕs,t|s=t=0 =
X , ∂tϕs,t|s=t=0 = Y ∈ Γ(ϕ−1TN). We have, in obvious notation,

Ẽ(ϕs,t) = Rm−2
1 R2

2E(ϕs,t)

⇒ H̃ess(X, Y ) =
∂2

∂s ∂t
Ẽ(ϕs,t)

∣∣∣∣
s=t=0

= Rm−2
1 R2

2 Hess(X, Y )

= Rm−2
1 R2

2

∫

M

h(X,J Y )vol =

∫

M

h̃(X,R−2
1 J Y )ṽol.

✷

Since C is (formally) a sum of square roots of eigenvalues of J , we see that it scales as

C̃ = R−1
1 C . Hence, the scaling behaviour of H2 is inhomogeneous, and, except in the special

case that R1R
−2
2 = 1, the spectrum of H̃2 cannot be deduced directly from the spectrum of H2.

Since C is independent of the radius R2 whereas the spectra of H0 and H1 scale like 1/R
2
2, the

effect of the Casimir energy becomes less important for small R2. We have also numerically
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checked that a smaller radius of the target sphere reduces the effect of the Casimir energy term
significantly. For example for R1 = 1 and R2 = 1

4
, there is only one transposition, compared

to the H1 spectrum.
Throughout this paper we have used the convention that ~ = 1. If we reinstate the param-

eter ~ then the classical energy scales like ~0, the Casimir energy scales like ~1 whereas the
Laplacian and curvature terms scale like ~2. Hence, ~ can be removed by redefining R1 7→ R1/~,
so the semi-classical limit ~ → 0 coincides (formally) with the planar limit R1 → ∞.
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Figure 3: Energy levels interpolating between the L2 metric and the CP 3 metric. Here solid
lines correspond to positive and dashed lines to negative parity.

5.6 Deformation to the Fubini-Study metric

As a nontrivial test of our calculations we calculate how the spectrum changes as the metric is
smoothly deformed from the L2 metric to the well-known Fubini-Study metric of CP 3, where
the spectrum and degeneracy of the Laplace operator have been calculated explicitly. We
consider the one-parameter family of SO(3) × SO(3) invariant kähler metrics defined, as in
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Proposition 1, by the functions

As(λ) = 32sAFS(λ) + (1− s)AL2(λ), 0 ≤ s ≤ 1, (5.27)

where AFS and AL2 are given in (2.14) and (2.12), respectively, and the factor of 32 ensures
that the eigenvalues of the two Laplacians are of the same order of magnitude. The pth
eigenvalue of the Laplacian for the Fubini-Study metric on CP 3 with constant holomorphic
sectional curvature 4 (and hence coefficient function AFS) is

Ep = 4p(3 + p) (5.28)

with degeneracy
deg(Ep) =

3
4
(3 + 2p)(p+ 1)2(p+ 2)2, (5.29)

for p ≥ 1 [6]. Although it is not made clear in [6], the degeneracy of E0 = 0 must be 1 by the
Hodge isomorphism theorem, since CP 3 is connected, hence dimH0(CP 3) = 1 which equals
the dimension of the space of harmonic 0-forms. Note that deg(Ep) for p ≥ 1 is an integer
divisible by 9. In figure 3 we show how the energy levels change as the parameter s in (5.27)
is increased from 0 (the L2 metric) to 1 (the Fubini-Study metric). We distinguish between
states with even and odd parity. The ground state is E0 = 0 for both metrics. In figure 3
we follow all the energy levels of table 1, and it can be seen how the different energy levels
become degenerate at s = 1, the Fubini-Study limit. Our numerically computed energy levels
agree with the exact result to at least two decimal places, when we take into acount the factor
1
2
in H0 and normalize the Fubini-Study energy by a factor of 32, which arises from the factor

32 in (5.27).
Our numerical scheme at s = 1 does not find all eigenfunctions of △ on CP 3, because,

except for the ground state, we impose a boundary condition which forces the wavefunction
to vanish on ∂∞Rat1, the boundary of Rat1 at infinity. It is known [37] that ∂∞Rat1 coincides
with the image of the inclusion CP 1 ×CP 1 →֒ CP 3, ([a0, a1], [b0, b1]) 7→ [a0b1, a1b1, a1b1, a1b0].
The stabilizer of this subset of CP 3 in SU(4), the isometry group of CP 3, is isomorphic to
SU(2) × SU(2) (the isometry group of Rat1 itself). So, given an eigenfunction vanishing
on ∂∞Rat1, the SU(4) action generates a 9-dimensional orbit of degenerate eigenfunctions
which do not vanish on ∂∞Rat1 (because dimSU(4) = 15 and dimSU(2) × SU(2) = 6).
Hence, we expect the degeneracies found by our numerics (at s = 1) to be a factor 9 smaller
than the degeneracies of the true Laplacian on CP 3. This is precisely what we find in our
numerics. For example, the degeneracy of the second CP 3 eigenvalue is deg(E1)/9 = 15, which
corresponds to the levels {0, 1} and {1, 1} with degeneracy 2 ∗ 3 + 3 ∗ 3 = 15, see table 1.
Similarly, deg(E2)/9 = 84, corresponds to {0, 0}, {1, 1}, {0, 2}, {1, 1}, {1, 2}, and {2, 2} with
1+ 3 ∗ 3+ 2 ∗ 5+ 3 ∗ 3+ 2 ∗ 3 ∗ 5+ 5 ∗ 5 = 84. Further, deg(E3)/9 = 300, which corresponds to
{0, 1}, {1, 1}, {1, 2}, {0, 3}, {1, 2}, {2, 2}, {1, 3}, {2, 2}, {2, 3}, and {3, 3}, whose degenercies
add up to 300, as expected. To display all the levels which contribute to the fourth energy
eigenvalue of CP 3 we have also included the {3, 3} level in figure 3. Note that the second
excited {0, 0} state contributes to the fifth energy eigenvalue of CP 3.
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6 Concluding remarks

In this paper we discussed the semi-classical quantization of soliton dynamics for CP 1 lumps
moving on a 2-sphere. We followed Moss and Shiiki [28] who derived a Born-Oppenheimer
approximation to the quantum dynamics based on the moduli space approximation. We
were able to evaluate three different truncations of the Born-Oppenheimer Hamiltonian HBO,
namely the geometric Laplacian H0 = 1

2
△, the first geometric correction H1 given by the

scalar curvature κ of the moduli space, and the Hamiltonian H2 which consists of H1 together
with the Casimir energy. The Casimir energy is notoriously difficult to evaluate. At λ = 0 and
λ = ∞ the spectrum of the Jacobi operator is known explicitly. Our approach is to calculate
the regularized Casimir energy using zeta-function regularization for λ = 0 and λ = ∞. Then
the intermediate values are calculated using an approximate self-similarity of the eigenvalue
spectrum. We calculated the first 19 energy levels for H0, H1 and H2, and found that the
first two spectra are remarkably similar whereas the inclusion of the Casimir energy leads to
significant changes. There is an overall shift of the spectrum of H1 and H2. The relative errors
between H0 and H1 are 15% for the first excited state and less that 8% for other excited states.
By contrast, the relative errors between H0 and H2 are as high as 24% for some excited states.
There are only two transpositions of states where energy levels of H1 do not have the same
order compared to the H0 spectrum. However, the spectrum of H2 shows many transpositions.

We proved that all the spectra enjoy a rather sursprising spin-isospin exchange symmetry.
The proof rested on the identification of a hidden isometry of Rat1 which becomes manifest only
after one identifies Rat1

∼= TSO(3). As a non-trivial check of our calculations we calculated
how the energy levels change when we interpolate between the L2 metric and the Fubini-Study
metric on CP 3. We reproduced the known spectrum for CP 3 and discussed the degeneracies
of the energy levels.

Our approach allows us to calculate the spectrum of the Laplacian for any SO(3)×SO(3)
invariant kähler metric on Rat1. One interesting choice is A = c/Λ, for which the coefficient
of (λ ·T)2 vanishes in (5.1). In this case, the angular momentum operator L2 also commutes
with the Hamiltonian and l becomes an additional quantum number.

The lump dynamics serves as a toy model for other solitons. For example in three spatial
dimensions, two physically relevant models are the Skyrme model [34] and the Faddeev-Hopf
model [10, 11]. In both models, the solitons can be quantized as fermions due to so-called
Finkelstein-Rubinstein constraints [12]. Adkins, Nappi and Witten first quantized the B = 1
Skyrmion in [2]. The effects of the Casimir energy on the predictions of the Skyrme model in
the B = 1 sector have been discussed in great detail in [26]. The authors calculated the 1-loop
corrections to various physical quantities using phase-shift techniques to evaluate the Casimir
energy. For higher topological charge the ground and lowest excited states in the Skyrme
model and the Faddeev-Hopf model were calculated in [15, 18, 4] and [19] using zero-mode
quantization and Finkelstein-Rubinstein constraints. The results of this paper suggest that the
order of the states would remain the same, with minor changes, if the curvature correction in
the Born-Oppenheimer approximation was taken into account. However, the Casimir energy
could lead to significant changes in the order of states. A more careful analysis of higher order
terms in these models, and in particular, of the Casimir energy, would be very useful.
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Appendix

A The rough Laplacian

In this appendix we will compute in detail the action of the rough Laplacian △ϕ on sections
Y of ϕ−1TN of the form

Y = a(θ) cosmφẼ1. (A.1)

Recall that (M, g) = (N, h) = the unit sphere, (θ, φ) are the usual polar coordinates on M or

N , E1 = ∂/∂θ, E2 = cosec θ∂/∂φ is an orthonormal frame on M or N , Ẽ1 = E1 ◦ ϕ, Ẽ2 ◦ ϕ,
and ϕ : M → N is a map of the form ϕ(θ, φ) = (f(θ), φ) in polar coordinates. Now, given a
map between Riemannian manifolds ϕ : M → N , the pullback connexion ∇ϕ is the unique
connexion on the vector bundle ϕ−1TN satisfying the axioms

∇ϕ
X(Y1 + Y2) = ∇ϕ

XY1 +∇ϕ
XY2 (A.2)

∇ϕ
X(fY1) = X [f ]Y1 + f∇ϕ

XY1 (A.3)

∇ϕ
X(Y ◦ ϕ) = (∇N

dϕXY ) ◦ ϕ (A.4)

for all X ∈ Γ(TM), Y1, Y2 ∈ Γ(ϕ−1TN), f ∈ C∞(M) and Y ∈ Γ(TN), where ∇N is the
Levi-Civita connexion on (N, h). In our case ∇N (which coincides with ∇M ) is determined by
its action on the frame {E1, E2},

∇NE1 = cot θ e2 ⊗ E2, ∇NE2 = − cot θ e2 ⊗E1, (A.5)

where {e1, e2} is the coframe dual to {E1, E2}. From this we may deduce how ∇ϕ acts on

Ẽ1, Ẽ2. By property (A.4) and (A.5),

∇ϕ
E1
Ẽ1 = (∇N

f ′(θ)E1
E1) ◦ ϕ = 0 (A.6)

∇ϕ
E1
Ẽ2 = (∇N

f ′(θ)E1
E2) ◦ ϕ = 0 (A.7)

∇ϕ
E2
Ẽ1 = (∇N

sin f

sin θ
E2

E1) ◦ ϕ =
cos f

sin θ
Ẽ2 (A.8)

∇ϕ
E2
Ẽ2 = (∇N

sin f

sin θ
E2

E2) ◦ ϕ = −cos f

sin θ
Ẽ1. (A.9)

The rough Laplacian has 4 terms,

△ϕY = −∇ϕ
E1
(∇ϕ

E1
Y )−∇ϕ

E2
(∇ϕ

E2
Y ) +∇ϕ

∇M
E1

E1

Y +∇ϕ

∇M
E2

E2

Y. (A.10)
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We evaluate these in turn, for Y = a(θ) cosmφẼ1. First

∇ϕ
E1
(∇ϕ

E1
a cosmφẼ1) =

∂2

∂θ2
(a cosmφ)Ẽ1 = a′′ cosmφẼ1. (A.11)

The second term is more involved:

∇ϕ
E2
(a cosmφẼ1) = aE2[cosmφ]Ẽ1 + a cosmφ∇ϕ

E2
Ẽ1

= −masinmφ
sin θ

Ẽ1 + a
cosmφ cos f

sin θ
Ẽ2 (A.12)

⇒ ∇ϕ
E2
(∇ϕ

E2
a cosmφẼ1) = −m2a

cosmφ

sin2 θ
Ẽ1 − 2ma

sinmφ cos f

sin2 θ
Ẽ2

−acosmφ cos
2 f

sin2 θ
Ẽ1. (A.13)

The third term vanishes since ∇M
E1
E1 = 0, while the fourth term is

∇ϕ

∇M
E2

E2

(a cosmφẼ1) = − cot θ∇ϕ
E1
(a cosmφẼ1) = −a′ cot θ cosmφẼ1. (A.14)

Assembling the pieces, one sees that

△ϕ(a cosmφẼ1) =

(
−a′′ − a′ cot θ +

m2

sin2 θ
a+

cos2 f

sin2 θ
a

)
cosmφẼ1

+

(
2m cos f

sin2 θ
a

)
sinmφẼ2, (A.15)

as claimed in equation (4.14).

B Angular momentum calculations

In this appendix we briefly describe the evaluation of the operator (λ ·T)2. We closely follow
the notation in [8]. Note the spin quantum number j satisfies j = k since J2 = K2. We choose
the following convention for the spherical harmonics,

Yl,m(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pl

m(x) exp(imφ), (B.16)

where the associated Legendre polynomials are given by

Pl
m(x) =

(1− x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l. (B.17)

Note that Y ∗
l,m = (−1)mYl,−m and

2π∫

0

π∫

0

Y ∗
l,m(θ, φ)Yl′,m′(θ, φ) sin θ dθdφ = δll′δmm′ . (B.18)
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It is easy to show that (λ · T) = (λ · J), and we showed in section 3 that this operator
commutes with T and J2. Hence, the operator does not change the quantum numbers t, k, k3
and t3. Furthermore, the matrix elements are independent of t3 and k3, hence we can choose
without loss of generality t3 = 0 and k3 = 0. We need to evaluate

M ≡ (Ml̃l) = 〈k, l̃, t, 0|λ · J|k, l, t, 0〉, (B.19)

which is a (2min(k, t)+1) by (2min(k, t)+1) matrix, because the angular momentum quantum
numbers satisfy min(k, t) ≤ l, l̃ ≤ k + t. Since λ · J is a Hermitian operator the matrix M is
Hermitian, namely

Ml̃l =M †
ll̃
. (B.20)

Using Clebsch-Gordan coefficients (B.19) can be rewritten as

M =
∑

m1,m2

(k, l̃, t, 0|k,m1, l̃,−m1)〈k,m1, l̃,−m1|λ · J|k,m2, l,−m2〉(k,m2, l,−m2|k, l, t, 0).

(B.21)
The operator λ · J can be written in terms of spherical harmonics as

λ · J =
2
√
πλ√
3

(
− 1√

2
Y1,1J− +

1√
2
Y1,−1J+ + Y1,0J3

)
. (B.22)

Hence, we only need to evaluate

〈k,m1|J+|k,m2〉 = δm1,m2+1

√
(k −m2)(k +m2 + 1), (B.23)

〈k,m1|J−|k,m2〉 = δm1,m2−1

√
(k +m2)(k −m2 + 1), (B.24)

〈k,m1|J3|k,m2〉 = δm1,m2
m2, (B.25)

and
〈l̃, m1|Yl,m|l, m2〉, (B.26)

which can be calculated using (4.6.3) in [8], namely,

2π∫

0

π∫

0

Yl1,m1
(θ, φ)Yl2,m2

(θ, φ)Yl3,m3
(θ, φ) sin θdθdφ (B.27)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
, (B.28)

where the two matrices in (B.28) correspond to 3j symbols. The 3j symbol

(
l̃ l 1
0 0 0

)
(B.29)

vanishes unless l̃ = l ± 1, which can be used to show that M vanishes in the cases k = 0 or
t = 0. For example, for k = 0 the only allowed values of the angular momentum are l = t and
l̃ = t, which vanishes since l̃ 6= l ± 1.
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Following the notation in [8], the Clebsch-Gordan coefficients and the 3j symbols have
real entries. Hence, M is a real matrix and (B.20) implies that M is symmetric. Note
that the eigenvalues of M are 0,±1,±2, . . . ,±min(k, t), which can be explained as follows.
Heuristically, (λ · T) is the projection of the total angular momentum operator onto the λ

direction. Hence, it can be rotated by a change of variables to T3 which has eigenvalues
0,±1, · · ·±min(k, t). The highest possible value of t3 is min(k, t) because the dimension of M
is 2min(k, t) + 1.

Now, we can evaluate the matrix (B.19) for various values of k and t using Maple, for
example. For small values the formulae are more tractable. For example for (k, t) = (1, t) we
obtain

M2 = 〈1, l̃, t, 0|(λ · J)2|1, l, t, 0〉 = λ2

2t+ 1




t + 1 0
√
t(t + 1)

0 2t+ 1 0√
t(t + 1) 0 t


 . (B.30)

We showed in section 5.1 that there is a (k, t) → (t, k) for the respective matrices M. This
was verified by explicit calculation for all values (k, t) in table 1. As can be seen in (B.30)
there is a natural chess board structure in the matrix M2, which follows from the fact that M
vanishes unless l̃ = l ± 1, and hence M2 vanishes unless l̃ = l + 2, l, or l − 2.
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