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Abstract

This paper gives an overview of methods for the numerical eval-
uation of special functions, that is, the functions that arise in many
problems from mathematical physics, engineering, probability theory,
and other applied sciences. We consider in detail a selection of ba-
sic methods which are frequently used in the numerical evaluation of
special functions: converging and asymptotic series, including Cheby-
shev expansions, linear recurrence relations, and numerical quadrature.
Several other methods are available and some of these will be discussed
in less detail. We give examples of recent software for special functions
where these methods are used. We mention a list of new publications
on computational aspects of special functions available on our website.
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1 Introduction

For workers in the applied sciences the Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables [1], edited by Milton
Abramowitz and Irene Stegun, and published in 1964 is usually the first
source of information about the properties of special functions. It may be
the most cited book in mathematics. These days the Handbook is being up-
dated as a Digital Library of Mathematical Functions (DLMF), and will be
freely accessible in a Web version. Other sources for collections of formulas
for special functions on the web are Wolfram MathWorld 1 and Wikipedia 2.

These sources give many properties of special functions of which a num-
ber can be used for their numerical evaluation, sometimes with references
to suitable algorithms. However, it is not always clear how to write efficient
and reliable algorithms.

The present paper gives an overview on numerical methods for special
functions. It is based on our recent book [55] in which we consider four
Basic Methods, namely

1. Convergent and divergent series.

1http://mathworld.wolfram.com/
2http://en.wikipedia.org/
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2. Chebyshev expansions.

3. Linear recurrence relations and associated continued fractions.

4. Quadrature methods.

In addition we give a selection of published algorithms for special functions.
There are many other methods, which are also discussed in our book,

and some of them will be discussed in this overview as well. For example,
the use of differential equations will be discussed in connection with the
Taylor expansion method for initial boundary problems.

Our general point of view in connection with special functions is to re-
main modest in the number of parameters. It is possible to design straight-
forward algorithms for the generalized hypergeometric function

pFq

(

a1, · · · , ap
b1, · · · , bq

; z

)

=

∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, (1.1)

where p ≤ q+ 1 and (a)n is the Pochhammer symbol, also called the shifted
factorial, defined by

(a)0 = 1, (a)n = a(a+1) · · · (a+n−1) (n ≥ 1), (a)n =
Γ(a+ n)

Γ(a)
. (1.2)

Many special functions can be written in terms of this function, with the
main cases given by p = 1, q = 1 (Kummer functions, with convergence
of the series for all complex z) and p = 2, q = 1 (Gauss hypergeometric
functions, with convergence if |z| < 1). For efficient and reliable algorithms
the series in (1.1) is only of limited use.

Also, differential equations, especially those that arise in the physical
sciences, is the reservoir that generates many special functions. One may
define a general second order equation, make an algorithm for this equa-
tion, and expect that solutions of simpler equations follow from the general
solution. However, very difficult problems may arise then. Consider as an
example the equation

d2

dz2
w(z) =

(

pz2 + qz + r
)

w(z), (1.3)

the solutions of which can be expressed in terms of the parabolic cylinder
functions U and V , see [1, Ch. 19], which are solutions of the equation

d2

dz2
w(z) =

(

1
4
z2 + a

)

w(z), (1.4)
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When p = r = 0 in (1.3) that equation reduces to the Airy equation, whereas
the Airy functions are no special cases of the parabolic cylinder functions U
and V (in the sense as Airy functions are Bessel functions for certain values
of the order of these functions). A nontrivial limiting process with p → 0
and r → 0 is needed to get Airy functions from a linear combination of the
solutions of (1.3).

In its turn, the parabolic cylinder function U(a, z) is a special case of the
confluent hypergeometric function (also called Kummer functions) U(a, c, z).
We have two forms [1, p. 691]:

U(a, z) = 2−
1

4
− 1

2
ae−

1

4
z2U

(

1
2a+ 1

4 ,
1
2 ,

1
2z

2
)

= 2−
3

4
− 1

2
aze−

1

4
z2U

(

1
2a+ 3

4 ,
3
2 ,

1
2z

2
)

.
(1.5)

The first form suggests that the function U(a, z) is an even function of
z, the second one that it is odd. The point is that this Kummer function is
multi-valued, and the representation

U(a,±z) =

√
π2−

1

4
− 1

2
ae−

1

4
z2

Γ(3
4 + 1

2a)
1F1

(

1
2a+ 1

4
1
2

; 1
2z

2

)

∓
√
π2

1

4
− 1

2
aze−

1

4
z2

Γ(1
4 + 1

2a)
1F1

(

1
2a+ 3

4
3
2

;
1

2
z2

) (1.6)

gives a better insight. However, this form is extremely unstable for inter-
mediate or large values of z.

In our opinion it is important to have codes that can be used for a
limited class of functions. In this sense we have written algorithms for
conical functions Pµ−1/2+iτ (x) [56] for real x, τ and µ, and not for Legendre

functions of general complex degree. Also, we have written codes [46] for
modified Bessel functions of purely imaginary order, that is for Kia(x) and
a related function, and not a general code for Bessel functions with general
complex order.

2 Convergent and divergent series

Convergent series for special functions usually arise in the form of hyperge-
ometric series, with as general form the one shown in (1.1). The series is
easy to evaluate because of the recursion (a)n+1 = (a+n)(a)n, n ≥ 0, of the
Pochhammer symbols in (1.2). For certain special function, for example for
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the modified Bessel function

Iν(z) =
(

1
2
z
)ν

∞
∑

n=0

(1
4z

2)n

Γ(ν + n+ 1)n!
=
(

1
2
z
)ν

0F1

(

−
ν + 1

; 1
4
z2

)

(2.1)

it gives a stable representation when z > 0 and ν ≥ 0 and it is an efficient
representation when z is not large compared with ν. However, when we use
this expansion in the representation of the other modified Bessel function

Kν(z) = 1
2
π
I−ν(z) − Iν(z)

sinπν
, (2.2)

it can be used only for small values of z. This is because of the cancellation
of numerical digits, which can be seen from the asymptotic estimates

Iν(z) ∼
ez√
2πz

, Kν(z) ∼
√

π

2z
e−z, z → ∞, (2.3)

which is valid for fixed values of ν.
There is another phenomenon when using combinations of hypergeomet-

ric functions. When ν is and integer, the form in (2.2) is well defined by
a limiting process, but for numerical computations a special algorithm is
needed. See [103], where it is shown that it is sufficient to treat the case
ν ∼ 0 in detail and that the remaining integer values follow from recursion
relations.

The case for confluent hypergeometric functions is more complicated.
We have for the function U(a, c, z) the representation

U(a, c, z) =
π

sinπc









1F1

(

a
c
; z

)

Γ(1 + a− c)Γ(c)
− z1−c

1F1

(

1 + a− c
2 − c

; z

)

Γ(a)Γ(2 − c)









, (2.4)

and it is useful for small values of z. Consider c ∼ 0. We have

lim
c→0

1F1

(

a

c
; z

)

Γ(1 + a− c)Γ(c)
=

z 1F1

(

a+ 1

2
; z

)

Γ(a)
. (2.5)

So, apart from this limit, another (simultaneous) limiting process for c→ 0
needs to be controlled, and also the extra parameter a makes it more difficult
to write a stable algorithm. A published algorithm seems not to be available
for this case.

6



For Gauss hypergeometric functions similar problems arise in the con-
nection formulas, say the one writing a function with argument z as a linear
combination of two functions with argument 1 − z. See [33] for numerical
algorithms.

Other instabilities occur when the parameters of the hypergeometric
function become large and/or complex.

For Gauss and Kummer hypergeometric functions many other conver-
gent expansions are available, for example in terms of Chebyshev polyno-
mials and of Bessel functions; see [72, §§9.3.4, 9.4.1, 9.4.3, ]. For a different
type of expansions in terms of Bessel functions, with an application to the
parabolic cylinder functions, see [75].

2.1 Divergent expansions

With this we mean asymptotic expansions of the form

F (z) ∼
∞
∑

n=0

cn
zn
, z → ∞. (2.6)

The series usually diverges, but it has the property

F (z) =

N−1
∑

n=0

cn
zn

+RN (z), RN (z) = O
(

z−N
)

, z → ∞, (2.7)

for N = 0, 1, 2, . . ., and the order estimate holds for fixed N . This is the
Poincaré-type expansion and for special functions like the gamma and Bessel
functions they are crucial for evaluating these functions. Other variants of
the expansion are also important, in particular expansions that hold for a
certain range of additional parameters (this leads to the uniform asymptotic
expansions in terms of other special functions like Airy functions, which are
useful in turning point problems).

Usually the optimal choice of N with a given (large) z occurs for the N
that makes cN/z

N the smallest term. And usually the error estimate in (2.7)
may be exponentially small for this N . Say, with z > 0, the smallest term
is achieved when N ∼ z, then it may happen that RN (N) = O(exp(−N)).
Many asymptotic expansions for special functions share this property, and
it makes asymptotic expansions very useful for numerical computations.

Convergent power series may be very unstable in certain parts of their
convergence region, as the expansion of e−z for ℜz > 0. In a similar way,
asymptotic expansions may be very useful in a certain sector of the complex
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z−plane, but may become useless in other sectors. Other expansions may
be available in these sectors.

For example, consider the compound expansion of the Kummer function

1

Γ(c)
1F1

(

a

c
; z

)

=
ezza−c

Γ(a)

[

R−1
∑

n=0

(c− a)n(1 − a)n
n! zn

+ O
(

|z|−R
)

]

+

z−ae±iπa

Γ(c− a)

[

S−1
∑

n=0

(a)n(1 + a− c)n
n! (−z)n + O

(

|z|−S
)

]

,

(2.8)

the upper sign being taken if −1
2π < ph z < 3

2π, the lower sign if −3
2π <

ph z < 1
2π. When ℜz > 0 the second term can be neglected because of ez

in front of the first term. We see that within a sector properly inside the
sector −1

2π < ph z < 1
2π we can work with one expansion, and in a sector

containing the negative z−axis with another one. In sectors containing the
imaginary axis we need both expansions.

The fact that an entire function, as this Kummer function, does not have
a unique asymptotic expansion valid for all phases of z will be explained in
§6, where we discuss elements of the Stokes phenomenon.

A remarkable point is in this example that we have, say for −1
2π + δ <

ph z < 1
2π − δ (δ a small positive number), not only one expansion, but

also an expansion that gives an exponentially small correction to the main
expansion. For computations (and also for applications in physics) this
may give interesting information. The role of exponentially small terms
in asymptotics has been discussed in great detail the last twenty years.
For many aspects from a physicists’ point of view, we refer to The Devil’s
Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series [12] for
a lively introduction to this topic.3 In §6 we also discuss aspects of the role
of exponentially small terms.

3 Linear recurrence relations

Many special functions of mathematical physics satisfy a three-term recur-
rence relations. We first give a simple relation and discuss stability and
direction of recursion, which elements are important in the general theory.

3The “Devil’s invention” refers to a quote from Niels Hendrik Abel (1828), who claimed
“Divergent series are the invention of the devil, and it is shameful to base on them any
demonstration whatsoever.”
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3.1 A simple recurrence relation

The recurrence relations

fn = fn−1 −
xn

n!
, gn = gn−1 +

xn

n!
, n = 1, 2, . . . , (3.1)

with initial values f0 = ex − 1, g0 = 1 have solutions

fn =

∞
∑

m=n+1

xm

m!
, gn = ex − fn =

n
∑

m=0

xm

m!
, (3.2)

which are in fact special cases of the incomplete gamma functions:

fn = ex
γ(n+ 1, x)

n!
, gn = ex

Γ(n+ 1, x)

n!
, n = 0, 1, 2, . . . , (3.3)

Assume that x > 0. Then, following our intuition, the recursion for gn will
not cause any problem, since two positive numbers are always added during
the recursion. For the recurrence relation of fn it is not clear, but there
is a potential danger owing to the subtraction of two positive quantities.
Note that the computation of the initial value f0, for small values of x, may
produce a large relative error, when the quantities ex and 1 are simply sub-
tracted. This problem repeats itself for each subsequent fn that is computed
by using the recurrence relation: in each step the next term of the Taylor
series is subtracted from the exponential function.

Apparently, this is a hopeless procedure for computing successive fn
(even when x is not small). On the other hand, the computation of successive
gn does not show any problem.

In the study of recurrence relations it may make sense to change the di-
rection of the recursion. Writing the recursion for fn and gn in the backward
direction:

fn−1 = fn +
xn

n!
, gn−1 = gn −

xn

n!
(3.4)

then we note that for both solutions the roles are reversed: gn is obtained
by subtraction, whereas fn is obtained by addition of positive numbers. In
addition, limn→∞ fn = 0.

It can be easily verified that both fn and gn satisfy the recurrence relation

(n+ 1)yn+1 − (x+ n+ 1)yn + xyn−1 = 0. (3.5)

Again, this relation is stable for the computation of gn in the forward direc-
tion; it is stable for fn in the backward direction. Note that the solutions of
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this recursion satisfy fn → 0, gn → ex as n→ ∞. Apparently, the solution
which becomes ultimately small in the forward direction (small compared
to the other solution), is the victim. A similar phenomenon occurs in the
backward direction. This phenomenon will be explained and put in a general
framework in the following section.

3.2 Some elements of the general theory

For details on the theory of this topic we refer to [55, Chap. 4].
Consider the recurrence relation

yn+1 + bnyn + anyn−1 = 0, n = 1, 2, 3, . . . , (3.6)

where an and bn are given, with an 6= 0. Equation (3.6) is also called
a linear homogeneous difference equation of the second order. In analogy
with the theory of differential equations, two linearly independent solutions
fn, gn exist in general, with the property that any solution yn of (3.6) can
be written in the form

yn = Afn +Bgn, (3.7)

where A and B do not depend on n. We are interested in the special case
that the pair {fn, gn} satisfies

lim
n→∞

fn
gn

= 0. (3.8)

Then, for any solution (3.7) with B 6= 0, we have fn/yn → 0 as n → ∞.
When B = 0 in (3.7), we call yn a minimal solution; when B 6= 0, we call
yn a dominant solution. When we have two initial values y0, y1, assuming
that f0, f1, g0, g1 are known as well, then we can compute A and B. That
is,

A =
g1y0 − g0y1

f0g1 − f1g0
, B =

y0f1 − y1f0

g0f1 − g1f0
. (3.9)

The denominators are different from 0 when the solutions fn, gn are linearly
independent.

When we assume that the initial values y0, y1 are to be used for gener-
ating a dominant solution, then A may, or may not, vanish; B should not
vanish: y0f1 6= y1f0. When however the initial values are to be used for
the computation of a minimal solution, then the much stronger condition
y0f1 = y1f0 should hold. It follows that, in this case, one and only one
initial value can be prescribed and the other one follows from the relation
y0f1 = y1f0; in other words, the minimal solutions, if it exists, is unique

10



up to a constant multiplicative factor. In the numerical approach this leads
to the well-known instability phenomena for the computation of minimal
solutions. The fact is that, when our initial values y0, y1 are not specified to
an infinite precision, − and consequently B does not vanish exactly − the
computed solution (3.7) always contains a fraction of a dominant solution
gn. Hence, in the long run, our solution yn does not behave as a minimal
solution, although we assumed that we were computing a minimal solution.
This happens even if all further computations are done exactly.

In applications it is important to know whether a given equation (3.6)
has dominant and minimal solutions. Often this can be easily concluded
from the asymptotic behavior of the coefficients an and bn.

Assume that for large values of n the coefficients an, bn behave as follows:

an ∼ anα, bn ∼ bnβ, ab 6= 0 (3.10)

with α and β real; assume that t1, t2 are the zeros of the characteristic
polynomial Φ(t) = t2 + bt+ a with |t1| ≥ |t2|. Then it follows from Perron’s
theorem [55, p. 93] that we have the following results.

1. If β > 1
2α then the difference equation (3.6) has two linearly indepen-

dent solutions yn,1 and yn,2, with the property

yn+1,1

yn,1
∼ −bnβ, yn+1,2

yn,2
∼ −a

b
nα−β, n→ ∞. (3.11)

2. If β = 1
2α and |t1| > |t2|, then the difference equation (3.6) has two

linear independent solutions yn,1 and yn,2, with the property

yn+1,1

yn,1
∼ t1n

β,
yn+1,2

yn,2
∼ t2n

β, n→ ∞, (3.12)

3. If β = 1
2α and |t1| = |t2|, or if β < 1

2α, then some information is still

available, but the theorem is inconclusive with respect to the existence
of minimal and dominant solutions.

3.3 Miller’s algorithm

This algorithm can be used for calculating a sequence

f0, f1, . . . , fN (3.13)

of values of a minimal solution that satisfies (3.6); N is a non-negative
integer. Such sequences frequently occur in expansions of special functions;
see for example the expansions in terms of Chebyshev polynomials in (4.16).
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When we use (3.6) in the backward direction we may start with two ini-
tial values fN and fN−1. But these are perhaps difficult to obtain. Miller’s
algorithm does not need these values, and uses a smart idea for the com-
putation of the required sequence (3.13). The algorithm works for many
interesting cases and gives an efficient method for computing such sequences.

Assume we have a relation of the form

S =

∞
∑

n=0

λnfn, S 6= 0. (3.14)

The series should be convergent and λn and S should be known. The series
in (3.14) plays a role in normalizing the required minimal solution. The
series may be finite; we only require that at least one coefficient λn with
n ≤ N is different from zero. When just one coefficient, say λn, is different
from zero, we assume that the value fn is available.

In Miller’s algorithm a starting value ν is chosen, ν > N , and a solution

{y(ν)
n } of (3.6) is computed with the false initial values

y
(ν)
ν+1 = 0, y(ν)

ν = 1. (3.15)

The right-hand sides may be replaced by other values; at least one value
should be different from zero. In some cases a judicious choice of these
values may improve the convergence of the algorithm.

The computed solution yn, with (3.15) as initial values, is a linear com-
bination of the solutions fn and gn, gn being a dominant solution. When
we choose ν large enough it follows that the wanted solution fn satisfies
fn

.
= ρyn, n = 0, 1, . . . , N , because the dominant solution gn can be ne-

glected in the backward direction. For details and proofs we refer to [34]
and [55, §4.6]. The number ρ then follows from the normalizing sum (3.14).
That is,

ρ
.
=

1

S

ν
∑

n=0

λnyn. (3.16)

In [10] the above method was introduced for computing the modified
Bessel functions In(x). The recurrence relation for these functions reads

In+1(x) +
2n

x
In(x) − In−1(x) = 0. (3.17)

A normalizing condition (3.14) is

ex = I0(x) + 2I1(x) + 2I2(x) + 2I3(x) · · · . (3.18)
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Table 1: Computing the modified Bessel functions In(x) for x = 1 by using
(3.17) in the backward direction. The underlined digits in the third column
are correct.

n yn before normalization yn
.
= In(1) after normalization

0 2.2879 49300 10
+8 1.26606 587801 10

−0

1 1.0213 17610 10
+8 5.65159 104106 10

−1

2 2.4531 40800 10
+7 1.35747 669794 10

−1

3 4.0061 29000 10
+6 2.21684 249288 10

−2

4 4.9434 00000 10
+5 2.73712 022160 10

−3

5 4.9057 00000 10
+4 2.71463 156012 10

−4

6 4.0640 00000 10
+3 2.24886 614761 10

−5

7 2.8900 00000 10
+2 1.59921 829887 10

−6

8 1.8000 00000 10
+1 9.96052 919710 10

−8

9 1.0000 00000 10
+0 5.53362 733172 10

−9

10 0.0000 00000 10
+0 0.00000 000000 10

−0

That is, S = ex, λ0 = 1, λn = 2 (n ≥ 1). We take x = 1 and initial values
(3.15) with ν = 9 and obtain the results given in Table 1.

The rightmost column in Table 1 is obtained by dividing the results of
the middle column by

ρ
.
=

1

e

9
∑

n=0

λny
(9)
n = 1.807132898610

+8. (3.19)

When we take N = 5, which means we want to compute the sequence
I0(1), I1(1), . . . , I5(1), we see that these quantities are computed with at
least 10 correct decimal digits.

3.4 Examples of hypergeometric functions and recursions

We mention classes of functions of hypergeometric type that are of interest
for applications and give a few details about their recursions.

3.4.1 Bessel functions

In the case of ordinary Bessel functions, we have the recurrence relation

yn+1 −
2n

z
yn + yn−1 = 0, z 6= 0, (3.20)
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with solutions
fn = Jn(z), gn = Yn(z). (3.21)

This is covered by (3.11), with

a = 1, α = 0, b = −2

z
, β = 1. (3.22)

In this case
fn+1

fn
∼ z

2n
,

gn+1

gn
∼ 2n

z
. (3.23)

The known asymptotic behavior of the Bessel functions reads

fn ∼ 1

n!

(z

2

)n
, gn ∼ −(n− 1)!

π

(

2

z

)n

, n→ ∞. (3.24)

Similar results hold for the modified Bessel functions, with recurrence rela-
tion

yn+1 +
2n

z
yn − yn−1 = 0, z 6= 0, (3.25)

with solutions In(z) (minimal) and Kn(z) (dominant).
There is an extensive literature on the use of recursion for evaluating

Bessel functions, with as pioneering paper [34]; see also [4, 97, 67].

3.4.2 Kummer functions

The Kummer functions (or confluent hypergeometric functions) 1F1 and U
do not satisfy the same recurrence relations, but by multiplying them with
certain gamma functions they do. We assume z > 0. An overview of the
relevant recurrence relations can be found in [1, Chap. 13].

Recursion with respect to a. The functions

Γ(a+ n)

Γ(a+ n+ 1 − c)
1F1

(

a+ n
c

; z

)

and
Γ(a+ n)

Γ(a)
U(a+ n, c, z)

(3.26)
are respectively dominant and minimal.

Recursion with respect to c. The functions

Γ(c− a+ n)

Γ(c+ n)
1F1

(

a
c+ n

; z

)

and U(a, c + n, z) (3.27)

are respectively minimal and dominant.
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There are other interesting cases: recursion with respect to both a and
c, and recursion with respect to negative n. All the possible cases are ana-
lyzed in [99], where it is shown that the Kummer recurrences always have a
minimal solution except for the case of recursion over a when z is real and
positive (for a→ −∞) or negative real (for a→ +∞). See also [29] and [55,
§4.5.1].

3.4.3 Gauss hypergeometric functions

The recursions for the functions

2F1

(

a+ ǫ1n, b+ ǫ2n
c+ ǫ3n

; z

)

, (3.28)

where ǫj = 0,±1, not all equal to zero, and z is complex are analyzed in
[48, 52]. Of the 27 nontrivial cases, only a limited set of these recursions need
to be considered. This is because of several relations between contiguous
Gauss functions. Among other results, in [52] it is shown that the function
(3.28) is minimal around z = 0 when ǫ3 > 0. An overview of the relevant
recurrence relations can be found in [1, Chap. 15].

3.4.4 Legendre functions

For definitions and properties, see [1, Chap. 8] and [105, Chap. 8]. Legen-
dre functions are special cases of Gauss hypergeometric functions, but the
recursions need special attention. When ℜz > 0, z /∈ (0, 1], Pµν (z) is the
minimal solution of the recursion with respect to positive order µ; Qµν (z) is
dominant. Particular cases are toroidal functions and conical functions.The
latter have the form Pµ−1/2+iτ (z), Q

µ
−1/2+iτ (z), which are real for z > −1

and real τ and µ.
For recursion with respect to the degree ν, Qµν (z) is a minimal solution

and Pµν (z) is dominant.
For further details on numerical aspects and algorithms we refer to [38,

39, 40, 41, 53, 56] and [55, §12.3].

3.4.5 Coulomb wave functions

Information on these functions can be found in [1, Chap. 14]. Coulomb wave
functions are special cases of the Kummer functions, and they can also be
viewed as generalizations of Bessel functions. The regular function Fλ(η, ρ)
is the minimal solution with respect to increasing λ, while the irregular
Gλ(η, ρ) function is a dominant one. Algorithms based on recursions are
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discussed in [81]; in [92, 93] several types of series expansions are considered,
with references to earlier algorithms.

3.4.6 Parabolic cylinder functions

For definitions and properties, see [1, Chap. 19]. The standard forms are
U(a, z) and V (a, z), and, again, special cases of the Kummer functions. The
function U(a, x) is minimal in the forward a−recursion. For negative values
of a the situation is quite different, and for |a| large enough (a << −z2/4),
the solutions are neither minimal nor dominant. See [55, p. 102]. Algorithms
using recursion can be found in [50, 51, 91, 98].

4 Chebyshev expansions

Chebyshev expansions are examples of convergent expansions, considered
earlier, but because of their special properties they deserve a separate dis-
cussion.

Chebyshev polynomials of the first kind Tn(x) have the nice property
Tn(cos θ) = cos(nθ), giving an equal ripple in the θ−interval [0, π] and in
the x−interval [−1, 1]. Because of their excellent convergence properties,
Chebyshev expansions may replace convergent power series and divergent
asymptotic expansions, or they may be used for filling the gap between the
domains where convergent and asymptotic expansions can be used.

The standard Chebyshev expansion is of the form

f(x) =

∞
∑

n=0

′cnTn(x), −1 ≤ x ≤ 1, (4.1)

where the prime means that the first term is to be halved. Provided that
the coefficients ck decrease in magnitude sufficiently rapidly, the error made
by truncating the Chebyshev expansion after the terms k = n, that is,

En(x) =

∞
∑

k=n+1

ckTk(x), (4.2)

will be given approximately by

En(x)
.
= cn+1Tn+1(x), (4.3)

that is, the error approximately satisfies the equioscillation property, which
is happening in best-approximation (mini-max) methods.
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4.1 Clenshaw’s summation method

There is a very simple algorithm due to Clenshaw [23] for evaluating the
finite sum

Sn(x) = 1
2
c0 +

n
∑

k=1

ckTk(x), (4.4)

which is based on the recurrence relation

xTk(x) = 1
2

(

Tk+1(x) + T|k−1|(x)
)

. (4.5)

The algorithm computes a sequence b1, b2, . . . , bn+1 and starts with putting
bn+1 = 0 and bn = cn. Next,

bk = 2xbk+1 − bk+2 + ck, k = n− 1, n − 2, . . . , 1. (4.6)

Then, Sn(x) = xb1 − b2 + 1
2c0.

4.2 Methods for obtaining the coefficients

The coefficients cn in the expansion in (4.1) can be obtained in several ways,
and we mention a few elements of the main methods. For details we refer
to [55, Chap. 3].

4.2.1 Tabled coefficients

In the case that the function f is an elementary or a one-variable special
function, such as the error function erf x, the Bessel function J0(x), and
so on, the coefficients can be obtained from tables, see [72]. Usually 20D
accuracy of the coefficients is given. In [89] 30D coefficients are given for the
error function and the complementary error function. Nowadays, computer
algebra systems can be used to obtain tables of high precision coefficients.

4.2.2 Discretizing the integral

A numerical method uses discretization of the integral representation. That
is,

ck =
2

π

∫ 1

−1

f(x)Tk(x)√
1 − x2

dx =
2

π

∫ π

0
f(cos θ) cos(kθ) dθ, (4.7)

and discretization gives

ck
.
=

2

n

n
∑

j=0

′′f

(

cos
πj

n

)

cos
πkj

n
, (4.8)
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where the primes mean that the first and last terms is are to be halved. This
is a discrete cosine transform, which can be computed by methods based on
the fast Fourier transform [110].

4.2.3 Clenshaw’s method

This method can be used for functions satisfying a linear ordinary differential
equations with polynomial coefficients of the form

m
∑

k=0

pk(x)f
(k)(x) = h(x), (4.9)

with pk polynomials and where the coefficients of the Chebyshev expansion
of the function h are known. The idea is as follows. Next to the expansion
in (4.1), we introduce expansions for the relevant derivatives:

f (s)(x) =

∞
∑

n=0

′c(s)n Tn(x), s = 0, 1, 2, . . . , (4.10)

and from known properties of the Chebyshev polynomials we have

2rc(s)r = c
(s+1)
r−1 − c

(s+1)
r+1 , r ≥ 1. (4.11)

A next element in Clenshaw’s method is to handle the powers of x occur-
ring in the differential equation satisfied by f . For this we need the relation
(4.5) and formulas for higher powers of x in the left-hand side. These can
easily be obtained from the above one.

By substituting the expansion in (4.1) in the equation in (4.9) and using

the formulas for the powers of x, a set of recursions for the coefficients c
(s)
r can

be obtained. Together with boundary values (or other known relations) this
set of recursions can be solved numerically, and Clenshaw [24, 25] explained
how this can be done by using a backward recursion method.

For example, the exponential function y(x) = eax satisfies the differential
equation y′ = ay. Substituting expansions following from (4.1) we obtain

c
(1)
r = acr. Using this in the form c

(1)
r+2 = acr+2 and using (4.11) we have

the recursion for the coefficients:

2(r + 1)rcr+1 = a(cr − cr+2), r ≥ 0. (4.12)

This is the recursion relation for the modified Bessel function Ir(a), and so
the cr is multiple of this function (the other modified Bessel function Kr(a)
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being excluded because of its behavior for large r). The value y(0) = 1 gives
cr = Ir(a). This result is known because of the expansion

ea cos θ =
∞
∑

r=0

′Ir(a) cos(rθ). (4.13)

It is not at all needed that we know the solution in terms of a known
function; for numerical purposes it is enough to have (4.12), and to use a
backward recursion scheme, the Miller algorithm, as explained in §3.3.

However, several questions arise in this successful method. The recur-
sion given in (4.12) is very simple, and we can find its exact solution. In

more complicated recursion schemes obtained for the coefficients c
(s)
r this

information is not available. The scheme may be of large order and may
have several solutions of which the asymptotic behavior is unknown. So, in
general, we don’t know if Clenshaw’s method for differential equations com-
putes the solution that we want, and if for the wanted solution the scheme
is stable in the backward direction.

Clenshaw’s method goes wrong in another simple example. Consider
y(x) = eax+bx

2

with differential equation y′ = (a+ 2bx)y. It is again easy to

give a recursion scheme for the coefficients c
(s)
r . It reads (we use also (4.5))

c(1)r = acr + b
(

cr+1 + c|r−1|
)

, r ≥ 0. (4.14)

The coefficient c
(1)
r can be eliminated simply by using this relation with r

replaced with r + 2, and invoking (4.11). This gives

2(r + 1)cr+1 = a (cr − cr+2) + b (cr+1 − cr+3) , r = 0, 1, 2, . . . . (4.15)

When applying a backward recursion algorithm for computing cr it appears
that the solution does not give the requested function y(x). The problem in
this case is that there are two independent minimal solutions of the recur-
rence relation and one dominant solution, and straightforward application of
Miller’s backward algorithm explained in §3.3 gives a linear combination of
the two minimal solutions. There are modifications of the Miller algorithm,
which can be used for obtaining the requested solution.

In [49] a similar phenomenon has been discussed for the computation of
the Weber function W (a, x), solution of the equation y′′ + (x2/4 − a)y = 0.
In that paper we describe a modification of Miller’s algorithm in detail.
See also [74] for an instability problem in Chebyshev expansions for special
functions.

19



4.2.4 Known coefficients in terms of special functions

As we have seen in (4.13), the coefficients in a Chebyshev expansion for
the exponential function are known in terms of special functions. There are
many other examples, also for higher transcendental functions. For example,
we have (see [72, p. 37])

J0(ax) =
∞
∑

n=0

ǫn(−1)nJ2
n(a/2)T2n(x),

J1(ax) = 2

∞
∑

n=0

(−1)nJn(a/2)Jn+1(a/2)T2n+1(x),

(4.16)

where −1 ≤ x ≤ 1 and ǫ0 = 1, ǫn = 2 if n > 0. The parameter a can be
any complex number. Similar expansions are available for J-Bessel func-
tions of any complex order, in which the coefficients are 1F2-hypergeometric
functions, and explicit recursion relations are available for computing the
coefficients. For general integer order, the coefficients are products of two
J-Bessel functions, as in (4.16). See again [72].

Another example is the expansion for the error function,

ea
2x2

erf(ax) =
√
πe

1

2
a2

∞
∑

n=0

In+ 1

2

(

1
2
a2
)

T2n+1(x), −1 ≤ x ≤ 1, (4.17)

in which the modified Bessel function is used. Again, a can be any complex
number.

The complexity of computing the coefficients of the expansions in (4.16)
seems to be greater than the computation of the function that has been ex-
panded. In some sense this is true, but the coefficients in (4.16), and those
of many other examples for special functions, satisfy linear recurrence rela-
tions, and the coefficients satisfying such relations can usually be computed
very efficiently by the backward recursion algorithm; see §3.3.

The expansions in (4.16) and (4.17) can be viewed as expansions near
the origin. Other expansions are available that can be viewed as expansions
at infinity, and these may be considered as alternatives for asymptotic ex-
pansions of special functions. For example, for the confluent hypergeometric
U -functions we have the convergent expansion in terms of shifted Chebyshev
polynomials T ∗

n(x) = Tn(2x− 1):

(ωz)aU(a, c, ωz) =

∞
∑

n=0

Cn(z)T
∗
n(1/ω), (4.18)
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where
z 6= 0, |ph z| < 3

2
π, 1 ≤ ω ≤ ∞. (4.19)

Furthermore, a, 1 + a − c 6= 0,−1,−2, . . . . When equalities hold for these
values of a and c, the Kummer U -function reduces to a Laguerre polynomial.
This follows from

U(a, c, z) = z1−cU(1 + a− c, 2 − c, z) (4.20)

and
U(−n, α+ 1, z) = (−1)nn!Lαn(z), n = 0, 1, 2, . . . . (4.21)

The expansion (4.18) is given in [72, p. 25]. The coefficients can be
represented in terms of generalized hypergeometric functions, in fact, Meijer
G-functions, and they can be computed from the recurrence relation

2Cn(z)

ǫn
= 2(n+ 1)A1Cn+1(z) +A2Cn+2(z) +A3Cn+3(z), (4.22)

where b = a+ 1 − c, ǫ0 = 1
2 , ǫn = 1 (n ≥ 1), and

A1 = 1 − (2n + 3)(n+ a+ 1)(n+ b+ 1)

2(n+ 2)(n + a)(n+ b)
− 2z

(n+ a)(n + b)
,

A2 = 1 − 2(n + 1)(2n + 3 − z)

(n+ a)(n + b)
,

A3 = −(n+ 1)(n + 3 − a)(n+ 3 − b)

(n+ 2)(n + a)(n+ b)
.

(4.23)

For applying the backward recursion algorithm it is important to know that

∞
∑

n=0

(−1)nCn(z) = 1, |ph z| < 3
2
π. (4.24)

This follows from

lim
ω→∞

(ωz)aU(a, c, ωz) = 1 and T ∗
n(0) = (−1)n. (4.25)

The standard backward recursion scheme (see §3) for computing the
coefficients Cn(z) works only for |ph z| < π, and for ph z = ±π a modification
seems to be possible; see [72, p. 26].

Although the expansion in (4.18) converges for all z 6= 0 in the indicated
sector, it is better to avoid small values of the argument of the U -function.
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Luke gives an estimate of the coefficients Cn(z) of which the dominant factor
that determines the speed of convergence is given by

Cn(z) = O
(

n2(2a−c−1)/3 e−3n
2
3 z

1
3

)

, n→ ∞, (4.26)

and we see that large values of ℜz1/3 improve the convergence.
The expansion in (4.18) can be used for all special cases of the Kummer

U -function, that is, for Bessel functions (Hankel functions and K-modified
Bessel function), for the incomplete gamma function Γ(a, z), with special
cases the complementary error function and exponential integrals. In [55,
§3.10] numerical coefficients are derived for expansions of the Airy function
Ai(x) for x ≥ 7 and for its derivative by using the expansion in (4.18).

5 Quadrature methods

We start with a simple example in which an oscillatory integral can be
transformed into a stable representation. Consider the integral

F (λ) =

∫ ∞

−∞
e−t

2+2iλt dt =
√
πe−λ

2

. (5.1)

Taking λ = 10 we get

F (λ)
.
= 0.6593662990 10

−43. (5.2)

When we ask a well-known computer algebra system to do a numerical
evaluation of the integral, without using the exact answer in (5.1) and with
standard 10 digits accuracy, we obtain

F (λ)
.
= 0.24 10

−12. (5.3)

We see that in this way this simple integral, with strong oscillations,
cannot be evaluated correctly. Increasing the accuracy from 10 to 50 digits
we obtain the answer

F (λ)
.
= 0.65936629906 10

−43, (5.4)

the first 8 digits being correct. Observe that we can shift the path of inte-
gration upwards until we reach the point t = iλ, the saddle point, and we
write

F (λ) =

∫ ∞

−∞
e−(t−iλ)2−λ2

dt = e−λ
2

∫ ∞

−∞
e−s

2

ds. (5.5)
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Now the saddle point is at s = 0, we integrate through this point along
a path where no oscillations occur, a steepest descent path. Moreover the
small factor e−λ

2

that causes the main problems in the standard quadrature
method, is now in front of the s−integral.

Similar methods can be applied to more complicated functions, in par-
ticular to a wide class of special functions from mathematical physics. Much
software has been developed for many of these functions, but for large pa-
rameters the software is not at all complete and reliable, in particular when
the parameters are large and complex.

We have come to the conclusion that methods based on asymptotic anal-
ysis are important for evaluating integrals by quadrature. Choosing suitable
paths of integration and scaling the functions by separating dominant factors
are important steps in these methods.

In this section we discuss the application of a simple quadrature rule,
namely, the trapezoidal rule. For integral representations of special func-
tions it may perform very well. Not always the standard integral represen-
tations should be taken, but modifications obtained by transformations or
by choosing contours in the complex plane.

5.1 The trapezoidal rule

Gauss quadrature is a well-known quadrature method for evaluating inte-
grals. It has a very good performance for various types of integrals over real
intervals, given that the quadrature has maximal degree of exactness. How-
ever, one of the drawbacks is that it is not very flexible in algorithms when
we want adjustable precision or when additional parameters are present.
Also, we need zeros and weights of a certain class of orthogonal polynomi-
als. For high precision algorithms computing these numbers in advance may
be time consuming and/or not reliable.

The n−point extended trapezoidal rule

∫ b

a
f(t) dt = 1

2
h[f(a) + f(b)] + h

n−1
∑

j=1

f (h j) +Rn, h =
b− a

n
, (5.6)

is more flexible, because we don’t need precomputed zeros and weights; for
this rule these numbers are trivial.

The error term has the form

Rn = − 1
12

(b− a)h2f ′′(ξ), (5.7)
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Table 2: The remainder Rn of the rule in (5.9) for several choices of n

n Rn

4 −.12 10
−0

8 −.48 10
−6

16 −.11 10
−21

32 −.13 10
−62

64 −.13 10
−163

128 −.53 10
−404

for some point ξ ∈ (a, b), and for functions with continuous second deriva-
tive.

More insight in the error term follows from the Euler-Maclaurin sum-
mation rule [55, p. 131]. This rule gives the representation (for functions f
having 2m+ 2 continuous derivatives in [a, b]):

Rn =
m
∑

j=0

B2j

(2j)!
h2j
(

f (2j−1)(a) − f (2j−1)(b)
)

−

(b− a)h2m+2 B2m+2

(2m+ 2)!
f (2m+2)(ξ),

(5.8)

for some point ξ ∈ (a, b). Bm are the Bernoulli numbers. The first numbers
with even index are B0 = 1, B2 = 1

6 , B4 = − 1
30 .

We take as an example the Bessel function

π J0(x) =

∫ π

0
cos(x sin t) dt = h+ h

n−1
∑

j=1

cos [x sin(h j)] +Rn, (5.9)

where h = π/n, and use this rule for x = 5. The results of computations are
shown in Table 2.

We observe that the error Rn is much smaller than the upper bound that
can be obtained from (5.7). The explanation comes from the periodicity in
the integral for the Bessel function. Hence, all terms of the sum in (5.8)
vanish, and we infer that now the error is O(h2m+2). And because for
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this integral this is true for any positive m, we conclude that the error is
exponentially small as a function of h.

Another example is the Bessel function integral for general order

Jν(x) =
1

2πi

∫

C
e−x sinh t+νt dt, (5.10)

where C starts at −∞− iπ and terminates at ∞ + iπ; see [105, p. 222]. On
this contour oscillations will occur, but we will select a special contour that
is free of oscillations for the case x ≤ ν.

We write ν = x cosh µ, µ ≥ 0. The saddle point of −x sinh t + νt =
−x(sinh t− t coshµ) occurs at t = µ, and at this saddle point the imaginary
part of −x sinh t + νt equals zero. A path free of oscillations (a steepest
descent path through the saddle point) can be described by the equation
ℑ(−x sinh t + νt) = 0. Writing t = σ + iτ we obtain for the path the
equation

cosh σ = cosh µ
τ

sin τ
, −π < τ < π. (5.11)

On this path we have

ℜ(−x sinh t+ νt) = −x(sinhσ cos τ − σ coshµ). (5.12)

Integrating with respect to τ , using dt/dτ = (dσ/dτ + i) (where dσ/dτ is an
odd function of τ), we obtain

Jν(x) =
1

2π

∫ π

−π
e−x(sinhσ cos τ−σ coshµ) dτ, 0 < x ≤ ν. (5.13)

The integrand is analytic and vanishes with all its derivatives at the points
±π. We can interpret the integrand as being a periodic C∞ function with
period 2π, and consider representation (5.8) of the remainder. Again, the
error in the trapezoidal rule is exponentially small.

When ν ≫ x the Bessel function becomes very small and we can take
the dominant part e−x(sinhµ−µ cosh µ) in front of the integral. When x ≥ ν
(the oscillatory case), the Bessel function can be represented in a similar
way, now by using two integrals (coming from the Hankel functions).

Our main conclusion of this section is that the trapezoidal rule may be
very efficient and accurate when dealing with a certain class of integrals.
Smoothness and periodicity of the integrand are the key properties here.
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5.1.1 The trapezoidal rule on R

In the previous section we considered integrals over finite intervals. For
integrals over R the trapezoidal rule may again be very efficient and accurate.

We consider

∫ ∞

−∞
f(t) dt = h

∞
∑

j=−∞
f(hj + d) +Rd(h), (5.14)

where h > 0 and 0 ≤ d < h. We apply this rule with even functions f
analytic in a strip Ga of width 2a > 0 around R:

Ga = {z = x+ iy | x ∈ R, −a < y < a}, (5.15)

which are bounded in Ga and for which limx→±∞ f(x+ iy) = 0 (uniformly
in |y| ≤ a) and

Ma(f) =

∫ ∞

−∞
|f(x+ ia)| dx <∞. (5.16)

Then, for real functions f , the remainder Rd(h) of (5.14) satisfies

|Rd(h)| ≤
e−πa/h

sinh(πa/h)
Ma(f). (5.17)

The proof is based on residue calculus; see [55, p. 151].
As an example we consider the modified Bessel function

K0(x) = 1
2

∫ ∞

−∞
e−x cosh t dt. (5.18)

We have, with d = 0,

exK0(x) = 1
2
h+ h

∞
∑

j=1

e−x(cosh(hj)−1) +R0(h). (5.19)

For x = 5 and several values of h we obtain the results given in Table 3 (j0
denotes the number of terms used in the series in (5.19)).

We see in this example that halving the value of h gives a doubling of the
number of correct significant digits (and, roughly speaking, a doubling of
the number of terms needed in the series). When programming this method,
observe that when halving h, previous function values can be used.
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Table 3: The remainder R0 of the rule in (5.19) for several choices of h

h j0 R0(h)

1 2 −.18 10
−1

1/2 5 −.24 10
−6

1/4 12 −.65 10
−15

1/8 29 −.44 10
−32

1/16 67 −.19 10
−66

1/32 156 −.55 10
−136

1/64 355 −.17 10
−272

5.2 Complex contours

In §5.1 we have transformed the complex contour integral (5.10) for the
Bessel function Jν(x) into a more suitable integral (5.13)by using saddle
point methods. Here we explain how this works for the Airy function for
applying the trapezoidal rule of on the real line of §5.1.1. This gives a very
flexible and efficient algorithm with adjustable precision.

We consider

Ai(z) =
1

2πi

∫

C
e

1

3
w3−zw dw, (5.20)

where ph z ∈ [0, 2
3π] and C is a contour starting at ∞e−iπ/3 and terminating

at ∞e+iπ/3 (in the valleys of the integrand).
Let

φ(w) = 1
3
w3 − zw. (5.21)

The saddle points are w0 =
√
z and −w0 and follow from solving φ′(w) =

w2 − z = 0.
The saddle point contour (the path of steepest descent) that runs through

the saddle point w0 is defined by

ℑ[φ(w)] = ℑ[φ(w0)]. (5.22)

We write

z = x+ iy = reiθ, w = u+ iv, w0 = u0 + iv0. (5.23)
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Figure 1: Saddle point contours for θ = 0, 1

3
π, 2

3
π, π and r = 5.

u

v
5.0

5.0

−5.0

−5.0

Then

u0 =
√
r cos 1

2
θ, v0 =

√
r sin 1

2
θ, x = u2

0 − v2
0, y = 2u0v0. (5.24)

The path of steepest descent through w0 is given by the equation

u = u0 +
(v − v0)(v + 2v0)

3
[

u0 +
√

1
3(v2 + 2v0v + 3u2

0)
] , −∞ < v <∞. (5.25)

Examples for r = 5 and a few θ−values are shown in Figure 1. The
relevant saddle points are located on the circle with radius

√
r and are

indicated by small dots.
The saddle point on the positive real axis corresponds with the case

θ = 0 and the two saddles on the imaginary axis with the case θ = π.
This is out of the range of present interest, but it is instructive to see that
the contour may split up and run through both saddle points ±w0. When
θ = 2

3π both saddle points are on one path, and the half-line in the z−plane
corresponding with this θ is called a Stokes line (see §6).

Integrating with respect to τ = u−u0 (and writing σ = v−v0) we obtain

Ai(z) =
e−ζ

2πi

∫ ∞

−∞
eψr(σ,τ)

(

dσ

dτ
+ i

)

dτ, (5.26)
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where ζ = 2
3z

3

2 , and

σ =
τ(τ + 3v0)

3
[

u0 +
√

1
3 (τ2 + 4v0τ + 3r)

] , −∞ < τ <∞, (5.27)

ψr(σ, τ) = ℜ[φ(w) − φ(w0)] = u0(σ
2 − τ2) − 2v0στ + 1

3
σ3 − στ2. (5.28)

Quadrature methods for evaluating complex Airy functions can be found
in [36, 43, 44, 45, 90].

6 The Stokes phenomenon

The Stokes phenomenon concerns the abrupt change across certain rays
in the complex plane, known as Stokes lines, exhibited by the coefficients
multiplying exponentially subdominant terms in compound asymptotic ex-
pansions. There is much recent interest in the Stokes phenomenon, and it
fits in the present paper because it has to do with sudden changes in ap-
proximations when a certain parameter (in this case the phase of the large
parameter) passes critical values.

6.1 The Airy function

First we explain this phenomenon by using a simple example from differential
equations. Consider Airy’s equation

d2w

dz2
= z w, (6.1)

the solutions of which are entire functions. When |z| is large the solutions
of (6.1) are approximated by linear combinations of

w± = z−
1

4 e±ξ, ξ = 2
3
z3/2. (6.2)

Obviously, w± are multivalued functions of the complex variable z with a
branch point at z = 0. Therefore, as we go once around the origin, the
solutions of (6.1) will return to their original values, but w± will not. It
follows that the constants c± in the linear combination

w(z) ∼ c−w−(z) + c+w+(z), z → ∞, (6.3)
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are domain-dependent. The constants change when we cross certain lines,
the boundaries of certain sectors in the z−plane.

In the above example one of the terms eξ, e−ξ maximally dominates the
other one at the rays ph z = 0,ph z = ±2π/3. In this example these 3 rays
are the Stokes lines. At the rays ph z = ±1

3π and the negative z−axis the
quantity ξ is purely imaginary, and, hence, the terms eξ, e−ξ are equal in
magnitude. These three rays are called the anti-Stokes lines 4.

For the Airy function Ai(z) we have the full asymptotic expansion (see
[1, Chap. 10])

Ai(z) ∼ c−z
− 1

4 e−ξ
∞
∑

n=0

(−1)ncnξ
−n c− = 1

2
π−

1

2 , |ph z| < π, (6.4)

with coefficients

cn =
Γ(3n + 1

2)

54n n!Γ(n+ 1
2 )
, n = 0, 1, 2, . . . . (6.5)

On the other hand, in another sector of the z-plane, we have

Ai(−z) ∼ c− z
− 1

4

[

e−ξ
∞
∑

n=0

(−1)ncnξ
−n + ieξ

∞
∑

n=0

cnξ
−n
]

, (6.6)

in which exactly the same term (with the same constant c−) is involved as
in (6.4), and there is another term corresponding with w+. We can rewrite
this in a more familiar expansion

Ai(−z) ∼ π−
1

2 z−
1

4

(

sin(ξ + 1
4
π)

∞
∑

n=0

(−1)n
c2n
ξ2n

−

cos(ξ + 1
4
π)

∞
∑

n=0

(−1)n
c2n+1

ξ2n+1

)

,

(6.7)

valid in the sector |ph z| < 2
3π. In the overlapping domain of expansions

(6.4) and (6.7), that is, when 1
3π < |ph z| < π, the term with w+ is asymp-

totically small compared with w−, and it suddenly appears in the asymptotic
approximation when we cross with increasing values of |ph z| the Stokes lines
at ph z = ±2

3π. It seems that, when going from (6.4) to (6.6), the constant

4This terminology is not the same in all branches of applied mathematics and math-
ematical physics: sometimes one sees a complete interchange of the names ‘Stokes line’
and ‘anti-Stokes line’.
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multiplying w+ changes discontinuously from zero values (when |ph z| < 2
3π)

to a non-zero value when we cross the Stokes line. This sudden appearance
of the term w+ does not have much influence on the asymptotic behavior
near the Stokes lines at |ph z| = 2

3π, because w+ is dominated maximally by
w− at these rays. However, see §6.3 below. Observe also the special value
θ = 2

3π in §5.2.

6.2 The recent interest in the Stokes phenomenon

This phenomenon of the discontinuity of the constants was discovered by
Stokes and was discussed by him in a series of papers (on Airy functions in
1857, on Bessel functions in 1868). It is a phenomenon which is not confined
to Airy or Bessel functions. The discovery by Stokes was, as Watson says,
apparently one of those which are made at three o’clock in the morning.
Stokes wrote in a 1902 retrospective paper: “The inferior term enters as it
were into a mist, is hidden for a little from view, and comes out with its
coefficients changed.”

In 1989 the mathematical physicist Michael Berry provided a deeper ex-
planation. He suggested that the coefficients of the subdominant expansion
should be regarded not as a discontinuous constant but, for fixed |z|, as
a continuous function of ph z. Berry’s innovative and insightful approach
was followed by a series of papers by himself and other writers. In par-
ticular, Olver put the formal approach by Berry on a rigorous footing in
papers with applications to confluent hypergeometric functions (including
Airy functions, Bessel functions, and Weber parabolic functions).

At the same time interest arose in earlier work by Stieltjes, Airey, Din-
gle,... to expand remainders of asymptotic expansions at optimal values of
the summation variable. This resulted in exponentially-improved asymp-
totic expansions, a method of improving asymptotic approximations by in-
cluding small terms in the expansion that are in fact negligible compared
with other terms in the expansion.

6.3 Exponentially small terms in the Airy expansions

We conclude this discussion by pointing out the relation between the Stokes
phenomenon and the exponentially small terms in the asymptotic expansion
of the Airy function. Consider the terms in the expansions in (6.4)–(6.7).
They have the asymptotic form

cnξ
−n = O

[

Γ(n) (2ξ)−n
]

, n→ ∞. (6.8)
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When z is large the terms decrease at first and then increase. The least
term of the first series of (6.6) is near n = n∗ = [|2ξ|] and its size is of order
e−2|ξ|. At the Stokes lines at |ph z| = 2

3π the quantity ξ is negative and the

exponential term in front of the first series in (6.6) equals e|ξ|. Hence the
order of magnitude of e−ξcn∗ξ−n

∗

is roughly of the same size as the second
part in (6.7), that is, of the size of eξ that is present in front of the second
series. It follows that near the Stokes lines (and of course when z turns to
the negative axis) the second series in (6.7) is not at all negligible when we
truncate the first series at the least term with index n∗.

At present we know, after Berry’s observations, that near the Stokes
lines one of the constants c± in the asymptotic representation in (6.2) in
fact is a rapidly changing function of z. In the case of (6.6) we can write

Ai(z) ∼ c− z
− 1

4

[

e−ξ
∞
∑

n=0

(−1)ncnξ
−n + iS(z) eξ

∞
∑

n=0

cnξ
−n
]

, (6.9)

where S(z) switches rapidly but smoothly from 0 to 1 across the Stokes line
at ph z = 2

3π. A good approximation to S(z) involves the error function,
which function can describe the fast transition in this asymptotic problem.

Many writers have contributed recently in this field, both for the Stokes
phenomenon of integrals and that of differential equations. For more details
see the survey paper [83].

7 A selection of other methods

Many other methods are available for computing special functions. In this
section we mention a selection. For all these topics more details can be
found in [55].

7.1 Continued fractions

For many elementary and special functions representations as continued frac-
tions exist. We give examples for incomplete gamma functions and incom-
plete beta functions that are useful for numerical computations.

We introduce the following notation. Let {an}∞n=1 and {bn}∞n=0 be two
sequences of real or complex numbers. With these numbers we construct a
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continued fraction of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4+...

(7.1)

A more convenient notation is

b0 +
a1

b1+

a2

b2+

a3

b3+

a4

b4 + · · · . (7.2)

For convergence aspects, contractions, even and odd parts, equivalence
transformations, and so on, we refer to the literature; see [55, Chap. 6] and
a recent handbook with many details for special functions [28].

To evaluate the finite part (also called the convergent)

Cn = b0 +
a1

b1+

a2

b2+

a3

b3+
· · · an

bn
, (7.3)

we can use recursion. Let

A−1 = 1, A0 = b0, B−1 = 0, B0 = 1. (7.4)

We compute An and Bn by using the following recursion

An = bnAn−1 + anAn−2, Bn = bnBn−1 + anBn−2, n ≥ 1. (7.5)

Then Cn = An/Bn. Several other algorithms are available; see [55, §6.6].
The recursion for An and Bn may produce large numbers of these quanti-
ties, causing overflow. However, because only the ratio An/Bn is needed to
compute the convergent Cn, scaling can be used to keep control.

7.1.1 Incomplete gamma functions

The incomplete gamma functions are defined by

γ(a, z) =

∫ z

0
ta−1e−t dt, Γ(a, z) =

∫ ∞

z
ta−1e−t dt, (7.6)

where for the first form we require ℜa > 0 and for the second one |ph z| < π.
We have

z−aezγ(a, z) = b0 +
a1

b1+

a2

b2+

a3

b3+

a4

b4 + · · · , (7.7)
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where z and a are complex, a 6= 0,−1,−2, . . ., and

b0 =
1

a− z
, am = mz, bm = a+m− z, m ≥ 1. (7.8)

This fraction corresponds to the power series

az−aezγ(a, z) =
∞
∑

k=0

zk

(1 + a)k
. (7.9)

For Γ(a, z) we have

(z + 1 − a)z−aezΓ(a, z) =
1

1+

α1

1+

α2

1+

α3

1 + · · · , (7.10)

where

αn =
n(a− n)

(z + 2n− 1 − a)(z + 2n+ 1 − a)
, n = 1, 2, 3, . . . . (7.11)

This form is used in [35] for computing the function Γ(a, x), for x > 1.5 and
−∞ < a < α∗(z), where α∗(x) ∼ x for large x. The fraction in (7.10) is
convergent for all z 6= 0 in the sector |ph z| < π, and for computations it is
an excellent alternative for the corresponding asymptotic expansion

z1−aezΓ(a, z) ∼
∞
∑

k=0

(−1)k
(1 − a)k
zk

, (7.12)

valid for a ∈ C, z → ∞, |ph z| < 3
2π.

7.1.2 Incomplete beta function

This function is defined by

Bx(p, q) =

∫ x

0
tp−1(1 − t)q−1 dt, ℜp > 0, ℜq > 0, (7.13)

and usually 0 ≤ x ≤ 1; when x < 1 the condition on q can be omitted. The
beta integral is obtained when we take x = 1, that is,

B(p, q) =

∫ 1

0
tp−1(1 − t)q−1 dt =

Γ(p)Γ(q)

Γ(p + q)
, ℜp > 0, ℜq > 0. (7.14)

We have the continued fraction

px−p(1 − x)−qBx(p, q) =
1

1+

d1

1+

d2

1+

d3

1 + · · · , (7.15)
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where, for n = 0, 1, 2, . . . ,

d2n+1 = − (p + n)(p+ q + n)

(p+ 2n)(p + 2n+ 1)
x,

d2n+2 =
(n+ 1)(q − n− 1)

(p + 2n+ 1)(p + 2n+ 2)
x.

(7.16)

When p > 1 and q > 1, the maximum of the integrand in (7.13) occurs
at x0 = (p − 1)/(p + q − 2), and the best numerical results are obtained
when x ≤ x0. When x0 < x ≤ 1, we use the reflection relation with the beta
integral (see (7.14))

Bx(p, q) = B(p, q) −B1−x(q, p). (7.17)

From a numerical point of view the continued fraction (7.15) has an
interesting property of the convergents: C4n and C4n+1 are less than this
value of the continued fraction and C4n+2, C4n+3 are greater than this value.
This gives excellent control of the convergence of an algorithm that uses
(7.15).

7.2 Sequence transformations

When applying numerical techniques to physical problems, results are usu-
ally produced in the form of sequences. Examples are iterative methods,
discretization methods, perturbation methods, and – most important in the
context of special functions – series expansions. Often, the sequences that
are produced in this way converge too slowly to be numerically useful. When
dealing with asymptotic series, summation of the sequences may also be dif-
ficult.

Sequence transformations are tools to overcome convergence problems of
that kind. A slowly convergent (or even divergent in the asymptotic sense)
sequence {sn}∞n=0, whose elements may be the partial sums

sn =

n
∑

k=0

ak (7.18)

of a convergent or formal infinite series, is converted into a new sequence
{s′n}∞n=0 with hopefully better numerical properties.

We discuss sequence transformations that are useful in the context of spe-
cial functions. For many special functions convergent and divergent (asymp-
totic) power series are available. Consequently, the emphasis in this section
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will be on sequence transformations that are able either to accelerate the
convergence of slowly convergent power series effectively or to sum divergent
asymptotic series.

7.2.1 Padé approximations

From a numerical point of view, the Padé approximants are important for
computing functions outside the disk of convergence of the power series of
the function, as well as inside the disk (for example, near the boundary of
the disk). The Padé method can also be successfully applied for locating
zeros and poles of the function.

Consider the power series

f(z) = c0 + c1z + c2z
2 + · · · , (7.19)

with c0 6= 0. This series may be convergent or just a formal power series.
We introduce a rational function Nn

m(z)/Dn
m(z), where Nn

m(z) and Dn
m(z)

are polynomials of maximal degree n and m, respectively. That is,

Nn
m(z) = a0 + a1z + · · · + anz

n, Dn
m(z) = b0 + b1z + · · · + bmz

m. (7.20)

We choose these polynomials such that the power series expansion ofNn
m(z)−

f(z)Dn
m(z) starts with a term An,mz

n+m+1. The ratio Nn
m(z)/Dn

m(z), of
which the polynomials Nn

m(z) and Dn
m(z) satisfy the conditions

degree Nn
m(z) ≤ n, degree Dn

m(z) ≤ m,

Nn
m(z) − f(z)Dn

m(z) = An,mz
n+m+1 + · · · ,

(7.21)

is called a Padé approximant of type (n,m) to the power series (7.19) (the
function f). The ratio Nn

m(z)/Dn
m(z) is denoted by [n/m]f .

For each pair (n,m) at least one rational function exists that satisfies the
conditions in (7.21), and this function can be found by solving the equations































a0 = c0b0,

a1 = c1b0 + c0b1,
...

an = cnb0 + cn−1b1 + · · · + cn−mbm,



















0= cn+1b0 + · · · + cn−m+1bm,
...

0= cn+mb0 + · · · + cnbm,

(7.22)
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where cj = 0 if j < 0. When m = 0 the system of equations at the right is
empty. In this case aj = cj(j = 0, 1, . . . , n) and b0 = 1, and the partial sums
of (7.19) yield the Padé approximants of type (n, 0). In general, first the set
at the right-hand side of (7.22) is solved (a homogeneous set of m equations
for the m+ 1 values bj), which has at least one nontrivial solution. We take
a normalization, for example, by taking b0 = 1 (see also the discussion in
[7, p. 18]), and with this choice the last m equations give b1, . . . , bm as the
solution of a system of m linear equations. The set on the left-hand side in
(7.22) then yields a0, . . . , an.

The array of Padé approximants

[0/0]f [0/1]f [0/2]f · · ·
[1/0]f [1/1]f [1/2]f · · ·
[2/0]f [2/1]f [2/2]f · · ·

...
...

...
. . .

(7.23)

is called a Padé table. It is arranged here so that approximants with the
same denominator degree are located in the same column. As remarked
earlier, the first column corresponds to the partial sums of the power series
in (7.19). The elements of the first row correspond to the partial sums of
the power series of 1/f .

In the literature special attention is paid to the diagonal elements [n, n]f
of the table, with applications to orthogonal polynomials, quadrature for-
mulas, moment problems, and other problems of classical analysis.

In applied mathematics and in theoretical physics, Padé approximants
have become a useful tool for overcoming convergence problems with power
series. The popularity of Padé approximants in theoretical physics is due
to Baker [5], who also wrote a monograph on Padé approximants [6]. Of
interest also is the monograph by Baker and Graves-Morris [7].

An extended bibliography on Padé approximants and related matters
containing several thousand references was published by Brezinski in [13].
For an annotated bibliography focusing on computational aspects, see [119].
Luke gives many rational approximations of special functions, and usually
these are Padé approximants; see [72, 73].

7.2.2 How to compute the Padé approximants

The approximants can be computed by Wynn’s cross rule. Any five Padé
approximants arranged in the Padé table as
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N

W C E

S

satisfy Wynn’s cross rule (see [121])

(N − C)−1 + (S − C)−1 = (W − C)−1 + (E − C)−1. (7.24)

Starting with the first column [n/0]f , n = 0, 1, 2, . . . , initializing the preced-
ing column by [n/ − 1]f = ∞, n = 1, 2, . . . , (7.24) enables us to compute
the lower triangular part of the table. Likewise, the upper triangular part
follows from the first row [0/n]f , n = 0, 1, 2, . . . , by initializing [−1/n]f = 0,
n = 1, 2, . . . .

The elements of the Padé table can also be computed by the epsilon
algorithm of Wynn [120]. We consider the recursions

ε
(n)
−1 = 0, ε

(n)
0 = sn, n = 0, 1, 2, . . . ,

ε
(n)
m+1 = ε

(n+1)
m−1 +

1

ε
(n+1)
m − ε

(n)
m

, n,m = 0, 1, 2, . . . .
(7.25)

If sn is the nth partial sum of a power series f , then ε
(n)
2k is the Padé ap-

proximant [n + k/k]f (cf. (7.23)). The elements ε
(n)
2k+1 are only auxiliary

quantities which diverge if the whole transformation process converges and
shouldn’t be used for convergence tests or output. A recent review of the
applications of the epsilon algorithm can be found in [60].

In applications one usually concentrates on obtaining diagonal elements
[n/n]f and elements not far away from the diagonal; see [114], which also
has an efficient modified algorithm for these elements.

7.2.3 Nonlinear sequence transformations

We discuss a few other sequence transformations that, in the case of power
series, produce different rational approximants, and they can also be applied
to other convergence acceleration problems.

Details on the history of sequence transformations and related topics,
starting from the 17th century, can be found in [14]; see also [15]. For review
papers, with many references to monographs devoted to this topic, we refer
the reader to [62, 114]. See also Appendix A in [11], written by Dirk Laurie,
with interesting observations and opinions about sequence transformations.
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First we mention Levin’s sequence transformation [68], which is defined
by

L(n)
k (sn, ωn) =

k
∑

j=0

(−1)j
(

k

j

)

(n+ j + 1)k−1

(ζ + n+ k)k−1

sn+j

ωn+j

k
∑

j=0

(−1)j
(

k

j

)

n+ j + 1)k−1

(ζ + n+ k)k−1

1

ωn+j

, (7.26)

where sn are the partial sums of (7.18) and the quantities ωn are remainder
estimates. For example, we can simply take ζ = 1 and

ωn = sn+1 − sn = an+1, (7.27)

but more explicit remainder estimates can be used.
Another transformation is due to Weniger [114], who replaced the powers

(n+ j + 1)k−1 in Levin’s transformation by Pochhammer symbols (n+ j +
1)k−1. That is, Weniger’s transformation reads

S(n)
k (sn, ωn) =

k
∑

j=0

(−1)j
(

k

j

)

(ζ + n+ j)k−1

(ζ + n+ k)k−1

sn+j

ωn+j

k
∑

j=0

(−1)j
(

k

j

)

(ζ + n+ j)k−1

(ζ + n+ k)k−1

1

ωn+j

. (7.28)

Other sequence transformations can be found in [114] or in [16, §2.7].
The sequence transformations (7.26) and (7.28) differ from other sequence
transformations because not only the elements of a sequence {sn} are re-
quired, but also explicit remainder estimates {ωn}. For special functions this
information is usually available when divergent asymptotic expansions are
considered. It was shown in several articles that the transformation (7.28)
is apparently very effective, in particular if divergent asymptotic series are
to be summed; see [9, 118, 116].

For transforming partial sums fn(z) =
∑n

k=0 γkz
k of a formal power

series

f(z) =

∞
∑

k=0

γkz
k, (7.29)

we can take the remainder estimates

ωn = γn+1z
n+1, (7.30)

and we replace z by 1/z in the case of an asymptotic series.
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With these modifications the transformations (7.26) and (7.28) become
rational functions of the variable z. If the coefficients γn in (7.29) are all
different from zero, these rational functions satisfy the asymptotic error
estimates [117, eqs. (4.28)–(4.29)]

f(z) − L(n)
k (fn(z), γn+1z

n+1) = O(zk+n+2), z → 0,

f(z) − S(n)
k (fn(z), γn+1z

n+1) = O(zk+n+2), z → 0.
(7.31)

These estimates imply that all terms of the formal power series, which were
used for construction of the rational approximants in this way, are repro-
duced exactly by a Taylor expansion around z = 0. Thus, the transfor-

mations L(n)
k (fn(z), γn+1z

n+1) and S(n)
k (fn(z), γn+1z

n+1) are formally very
similar to the analogous estimate (7.21) satisfied by the Padé approximants
[n/m]f (z) = Nn

m(z)/Dn
m(z).

7.2.4 Numerical examples

Simple test problems, which nevertheless demonstrate convincingly the power
of sequence transformations using explicit remainder estimates, are the in-
tegrals

E(ν)(z) =

∫ ∞

0

e−t dt
1 + ztν

(7.32)

and their associated divergent asymptotic expansions

E(ν)(z) ∼
∞
∑

k=0

(νk)!(−z)k , z → 0. (7.33)

For ν = 1, E(ν)(z) is the exponential integral E1 with argument 1/z ac-
cording to E(1)(z) = e1/zE1(1/z)/z. For ν = 2 or ν = 3, E(ν)(z) cannot be
expressed in terms of known special functions.

In order to demonstrate the use of sequence transformations with explicit

remainder estimates, both S(n)
k (fn(z), γn+1z

n+1) and Padé approximants are
applied to the partial sums

E(ν)
n (z) =

n
∑

k=0

(νk)!(−z)k, 0 ≤ n ≤ 50, (7.34)

of the asymptotic series (7.33) for ν = 1, 2, 3. The Padé approximants
were computed with the help of Wynn’s epsilon algorithm (see §7.2.2). All
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calculations were done in Maple, and the integrals E(ν)(z) were computed
to the desired precision with the help of numerical quadrature. For the
remainder estimates we took ωn = (ν(n+ 1))!(−z)n+1.

The results for E(1)(z) with z = 1 are

E(1)(1) = 0.59634 73623 23194 07434 10785,

L(50)
0 (E

(1)
0 (1), ω50) = 0.59634 73623 23194 07434 10759,

S(50)
0 (E

(1)
0 (1), ω50) = 0.59634 73623 23194 07434 10785,

[25/24] = 0.59634 7322,

[25/25] = 0.59634 7387.

(7.35)

The Padé approximants are not very efficient. Nevertheless, it seems that
they are able to sum the divergent series (7.33) for ν = 1.

The results for E(2)(z) with z = 1/10 are

E(2)(1/10) = 0.88425 13061 26979,

L(50)
0 (E

(2)
0 (1/10), ω50) = 0.88425 13061 26980,

S(50)
0 (E

(2)
0 (1/10), ω50) = 0.88425 13061 26985,

[25/24] = 0.88409,

[25/25] = 0.88437.

(7.36)

Here, the Padé approximants are certainly not very useful since they can
only extract an accuracy of three places.

The results for E(3)(z) with z = 1/100 are

E(3)(1/100) = 0.96206 71061,

S(50)
0 (E

(3)
0 (1/100), ω50) = 0.96206 71055,

L(50)
0 (E

(3)
0 (1/100), ω50) = 0.96206 71057,

[25/24] = 0.960,

[25/25] = 0.964.

(7.37)

In [59] it is shown that an asymptotic series, whose coefficients grow more
rapidly than (2n)!, is not Padé summable since subsequences [n+j/n] in the
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Padé table converge to different, j-dependent limits as n → ∞. The Levin
and Weniger transformations are apparently able to sum the asymptotic
series (7.33) even for ν = 3.

Other numerical examples of sequence transformations using explicit re-
mainder estimates can be found in [9, 115, 116]. For a recent paper on
transformations of hypergeometric series, see [21].

7.3 Other quadrature methods

In §5 we have described the use of the trapezoidal rule in the evaluation
of special functions. In [55, §5.3, §9.6] several other methods are discussed,
with as the main one Gaussian quadrature, and the relation with orthogonal
polynomials.

Other methods are Romberg quadrature, which provides a scheme for
computing successively refined rules with a higher degree of exactness. Fejér
and Clenshaw–Curtis quadratures are interpolatory rules which behave quite
similarly to Gauss–Legendre rules, but which are easier to compute and
provide nested rules. Other nested rules, related to Gauss quadrature but
harder to compute than the Clenshaw–Curtis rule, are Kronrod and Pat-
terson quadratures. Specific methods for oscillatory integrands are also de-
scribed, with special attention to Filon’s method.

7.4 Numerical inversion of Laplace transforms

We consider the pair of Laplace transforms

F (s) =

∫ ∞

0
e−stf(t) dt, f(t) =

1

2πi

∫ c+i∞

c−i∞
estF (s) ds, (7.38)

where f should be absolutely integrable on any finite interval [0, a] and the
number c is chosen such that all singularities of F (s) are at the left of the
vertical line ℜs = c.

The inversion problem is to find f(t) when F (s) is given. To solve this
problem numerically, an essential condition is whether function values of
F (s) are only available for real s or for complex values of s. The first case
is quite difficult and requires completely different techniques compared with
those for the second case. In this section we consider a method for the
case that F (s) is available as an analytic function in part of the complex
s-plane. We describe a method based on the deformation of the contour of
integration.
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We give an example in which an optimal representation of the integral
is obtained by deforming the contour of integration and by using a proper
value of c in the complex integral in (7.38). After selecting this new contour,
the trapezoidal rule can be used for numerical quadrature. As explained in
§5 this method may be very efficient for evaluating a class of integrals with
analytic integrands.

We use the Laplace transform pair (see [1, eq. (29.3.83)])

F (s) =
1

s
e−k

√
s =

∫ ∞

0
e−sterfc

k

2
√
t
dt,

erfc
k

2
√
t

=
1

2πi

∫ c+i∞

c−i∞
est−k

√
s ds

s
,

(7.39)

where in this case c > 0. We take k = 2λ and t = 1, which gives

erfcλ =
1

2πi

∫ c+i∞

c−i∞
es−2λ

√
s ds

s
, (7.40)

and we assume that λ > 0. When λ is large the integral becomes exponen-
tially small, and straightforward application of a quadrature rule is useless.

With the transformation s = λ2t, (7.40) becomes

erfcλ =
1

2πi

∫ c+i∞

c−i∞
eλ

2(t−2
√
t) dt

t
. (7.41)

When we take c = 1 the path runs through the saddle point at t = 1,
where the exponential function of the integrand has the value e−λ

2

, which
corresponds to the main term in the asymptotic estimate

erfcλ ∼ e−λ
2

√
πλ
, λ→ ∞. (7.42)

Because the convergence at ±i∞ along the vertical through t = 1 is rather
poor, the next step is to deform the contour into a new contour that termi-
nates in the left half-plane, with ℜt→ −∞.

In fact many contours are suitable, but there is only one contour through
t = 1 on which no oscillations occur. That contour, the steepest descent
path, is given by ℑ(t − 2

√
t) = 0, or in polar coordinates t = reiθ we have

r = sec2(1
2θ). See Figure 2. This gives, by integrating with respect to

θ ∈ [−π, π],

erfcλ =
e−λ

2

2π

∫ π

−π
e−λ

2 tan2( 1

2
θ) dθ. (7.43)
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c

Figure 2: The new contour of integration for (7.41) has the shape of a
parabola.

As discussed in §5.1 the trapezoidal rule is exceptionally accurate in this
case.

Table 4 gives the results of applying the composite trapezoidal rule with
step size h; n indicates the number of function values in the rule that are
larger than 10−15 (we exploit the fact that the integrand is even). All digits
shown in the approximation in the final row are correct.

When F (s) in (7.38) has singularities or poles, a straightforward and
optimal choice of the path of integration, as in the above example, might
not be easy to find. In these cases, or when less information is available on
the function F (s), a less optimal contour may be chosen.

Table 4: Composite trapezoidal rule for the integral in (7.43) with λ = 10.

h erfcλ n

0.25 0.20949 49432 96679 10
−44 5

0.20 0.20886 11645 34559 10
−44 6

0.15 0.20884 87588 72946 10
−44 8

0.10 0.20884 87583 76254 10
−44 11
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Figure 3: Zeros of the Jacobi polynomials P
(2,−42.5)
50 (x) (left), P

(2,−52)
50 (x)

(center), and P
(2,−63.5)
50 (x) (right) in the complex plane.

For example, we can take a parabola or a hyperbola that terminates in
the left half-plane at −∞. When we write s = u + iv, and consider the
parabola defined by u = p − qv2, and integrate with respect to v. When
we choose p and q properly all singularities of F (s) may remain inside the
contour (unless F (s) has an infinite number of singularities up to ±i∞).

Further details can be found in [80, 87, 101]. Recent investigations are
discussed in [88, 108, 112, 113].

7.5 Computing zeros of special functions

The zeros of special functions appear in a great number of applications
in mathematics, physics, and engineering, from the computation of Gauss
quadrature rules [57] in the case of orthogonal polynomials to many applica-
tions in which boundary value problems for second order ordinary differential
equations arise.

In some sense, the computation of the zeros of special functions has
nothing special: to compute the roots of an equation y(x) = 0, with y(x)
special or not, we can apply well-known methods (bisection, secant, Newton–
Raphson, or whatever) once we know how to compute the function y(x) (and
in the case of Newton–Raphson also its derivative) accurately enough.

However, as is generally the case with nonlinear equations, some infor-
mation on the location of the zeros is desirable, particularly when applying
rapidly convergent (but often unpredictable) methods like Newton–Raphson
or higher order methods.

The zeros of special functions usually appear nicely arranged, forming
clear patterns from which a priori information can be found. For instance,

the zeros of Jacobi polynomials P
(α,β)
n (x) are all real and in the interval

(−1, 1) for α > −1 and β > −1, and they satisfy other regularity properties
(such as, for instance, interlacing with the zeros of the derivative and with
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the zeros of contiguous orders). As α and/or β become smaller than −1,
some or all of the n zeros escape from the real axis, forming a regular pattern
in the complex plane (see Figure 3).

These regular patterns formed by the zeros is a common feature of “clas-
sical” special functions and beyond [22]. The regularity in the distribution
of zeros helps in the design of specific algorithms with good convergence
properties. In addition, for many special functions, accurate a priori approx-
imations are available. This a priori information, when wisely applied, will
save computation time and avoid divergent (or even chaotic) algorithms. In
a fortunate situation, as in the case of Bessel functions, asymptotic approx-
imations provide accurate enough starting values for higher order Newton–
Raphson methods; see [104].

In [55, Chap. 7], a variety of methods for computing zeros of special
functions is discussed, starting with bisection and the fixed point method,
including Newton-Raphson. In general, for computing zeros of special func-
tions it is a wise idea to use some of their properties and to design specific
methods.

Next to methods that take advantage of information about asymptotic
approximations for the zeros of special functions, there are methods for
which it is not necessary to compute values of these functions themselves
in order to obtain their zeros. This is the case for the classical orthogonal
polynomials, the zeros of which are the exact eigenvalues of real tridiagonal
symmetric matrices with very simple entries; this method is usually named
the Golub-Welsch algorithm [57]. The recurrence relation of the special
functions plays a crucial role because the matrix is built from the coefficients
of the recursion. Also, there are other functions, minimal solutions of three-
term recurrence relations (the Bessel function Jν(x) is among them) for
which the problem of computing zeros is not exactly an eigenvalue problem
for a (finite) matrix, but it can be approximated by it [58, 64].

Another type of methods, which are global in the sense that, similarly as
matrix methods, don’t require a priori estimations of the zeros for ensuring
convergence, are the fixed point methods of [42, 96]; these methods use
first order differential systems, which are satisfied by a large number of
special functions (hypergeometric functions among them). More recently,
a fixed order method of fourth order was obtained in [95], which can be
used to compute the zeros of any solution of any second order equation
y′′(x) + A(x)y(x) = 0 in an interval where A(x) is continuous. It is shown
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that, when A(x) > 0, the fixed point iteration

T (x) = x− 1
√

A(x)
arctan

(

√

A(x)y(x)/y′(x)
)

(7.44)

has order four and the sequence xn+1 = T (xn) converges for any x0 under
mild conditions on A(x). A scheme is given which guarantees convergence
for any continuous A(x) and allows for computing all the zeros in an interval.
Typically 3 or 4 iterations per zero are required for 100 digits accuracy.

Additional methods and details on obtaining information on the zeros
by using asymptotic expansions of the special functions, with examples such
as Airy functions, Scorer functions, error functions, parabolic cylinder func-

tions, Bessel functions, and Laguerre polynomials L
(α)
n (x) with large values

of α are given in [55, Chap. 7].

7.6 Uniform asymptotic expansions

The asymptotic expansions considered in §2.1 are simple in the sense that
they hold for large values of one variable, in fact the argument of the special
function. There are many powerful expansions available that hold also for
other large parameters.

For example, the expansion for the incomplete gamma function in (7.12)
holds when z is large, but it becomes useless when a is also large. Also,
the expansion in (7.9) converges for all a and z with trivial exceptions:
a 6= 0,−1,−2, . . .. But for computations it becomes useless when z is much
larger than a.

There is a nice alternate asymptotic representations for these functions
which can be used when a and/or z are large, and which in particular holds
when a ∼ z, a transition point in the behavior for large a and z. In this
representation the complementary error function

erfc z =
2√
π

∫ ∞

z
e−t

2

dt (7.45)

plays the role of the transition form very small to very large values, or for
the scaled functions

P (a, z) =
γ(a, z)

Γ(a)
, Q(a, z) =

Γ(a, z)

Γ(a)
(7.46)

from values close to 0 to values close to 1.
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We have the following representations:

Q(a, z) = 1
2

erfc(η
√

a/2) +Ra(η),

P (a, z) = 1
2

erfc(−η
√

a/2) −Ra(η),
(7.47)

where
1
2
η2 = λ− 1 − lnλ, λ =

z

a
, (7.48)

and

Ra(η) =
e−

1

2
aη2

√
2πa

Sa(η), Sa(η) ∼
∞
∑

n=0

Cn(η)

an
, (7.49)

as a→ ∞.
The relation between η and λ in (7.48) becomes clear when we expand

λ− 1 − lnλ = 1
2
(λ− 1)2 − 1

3
(λ− 1)3 + 1

4
(λ− 1)4 + · · · , (7.50)

and in fact the relation in (7.48) can also be written as

η = (λ− 1)

√

2(λ− 1 − lnλ)

(λ− 1)2
, (7.51)

where the sign of the square root is positive for λ > 0. For complex values
we use analytic continuation. An expansion for small values of |λ− 1| reads

η = (λ− 1) − 1
3
(λ− 1)2 + 7

36
(λ− 1)3 + · · · , (7.52)

and, upon inverting this expansion,

λ = 1 + η + 1
3
η2 + 1

36
η3 + · · · . (7.53)

The asymptotic expansion for Sa(η) in (7.49) holds uniformly with re-
spect to z ≥ 0. Both a and z may be complex. Note that the symmetry
relation P (a, z) + Q(a, z) = 1 is preserved in the representations in (7.47)
because erfc z + erfc(−z) = 2.

The first coefficients for Sa(η) are

C0 =
1

λ− 1
− 1

η
, C1(η) =

1

η3
− 1

(λ− 1)3
− 1

(λ− 1)2
− 1

12(λ− 1)
. (7.54)

These coefficients, and all higher ones, are regular at the transition point
a = z, or λ = 1, or η = 0. For numerical applications Taylor expansions can
be used, as explained in [55, §8.3].
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For Bessel functions we have a similar problem in the design of efficient
algorithms. All Bessel functions can be expanded in terms of Airy functions,
and these expansions are in particular useful in the neighborhood of the
turning point z = ν. For example, the Bessel function Jν(z) is oscillatory
for z > ν and monotonic for z < ν. Airy functions have a similar turning
point behavior, as follows from their differential equation w′′ − zw = 0.

The coefficients in the asymptotic series are regular at the turning point
z = ν, but for numerical evaluations we need expansions of the used coeffi-
cients in the neighborhood of the turning point. For more details we refer
to [55, §8.4] and [106].

Airy-type expansions are used in software for Bessel functions in [4, 46,
67], and for parabolic cylinder functions in [49, 50, 91].

7.7 Taylor expansion methods for ordinary differential equa-

tions

The special functions of mathematical physics usually arise as special so-
lutions of ordinary linear differential equations, which follow from certain
forms of the wave equation. Separation of the variables and the use of do-
mains such as spheres, circles, cylinders, and so on, are the standard ways
of introducing Bessel functions, Legendre functions, and confluent hyperge-
ometric functions (also called Whittaker functions). For an introduction to
this topic, see [105, Chap. 10].

In numerical mathematics, computing solutions of ordinary linear differ-
ential equations is a vast research area, with popular methods such as, for
example, Runge–Kutta methods. These techniques are usually not used for
computing special functions, mainly because so many other efficient methods
are available for these functions. However, when the differential equation
has coefficients in terms of analytic functions, as is the case for the equations
of special functions, a method based on Taylor expansions may be consid-
ered as an alternative method, in particular for solving the equation in the
complex plane.

In [55, §9.5] the basic steps are given for the Taylor expansion method,
in particular for linear second order equations of the form

d2w

dz2
+ f(z)

dw

dz
+ g(z)w = h(z), (7.55)

where f , g, and h are analytic functions in a domainD ⊂ C. For applications
to special functions f , g, and h are often simple rational functions, and
usually the equation is homogeneous.
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For further information and examples, see [82] and [71]. For an appli-
cation to compute solutions in the complex plane of the Airy differential
equation, see [32] with a Fortran computer program in [31]. In [49] Taylor
methods are used for computing the parabolic cylinder function W (a, x).

7.8 Computing symmetric elliptic integrals

Legendre’s standard elliptic integrals are the incomplete elliptic integral of
the first kind,

K(k) =

∫ φ

0

dθ
√

1 − k2 sin2 θ
, (7.56)

the incomplete integral of the second kind,

E(k) =

∫ φ

0

√

1 − k2 sin2 θ dθ, (7.57)

and the incomplete elliptic integral of the third kind,

Π(n;φ, k) =

∫ φ

0

1

1 − n sin2 θ

dθ
√

1 − k2 sin2 θ
. (7.58)

It is assumed here that k ∈ [0, 1], φ ∈ [0, 1
2π], although the functions can

also be defined for complex values of the parameters. Also, n is real, and
if n > 1, the integral of the third kind should be interpreted as a Cauchy
principal value integral. When φ = 1

2π the integrals are called complete
elliptic integrals.

The computational problem for the elliptic integrals has received much
attention in the literature, and the algorithms are usually based on successive
Landen transformations or Gauss transformations, or by infinite series.

By considering a new set of integrals it is possible to compute the el-
liptic integrals, also by using successive transformations, by very efficient
algorithms. The integrals are introduced in [17]. For example we have

RF (x, y, z) =
1

2

∫ ∞

0

dt
√

(t+ x)(t+ y)(t+ z)
. (7.59)

This function is symmetric and homogeneous of degree −1
2 in x, y, z and is

normalized so that RF (x, x, x) = x−
1

2 .
Many elementary functions can be expressed in terms of these integrals.

For example,

RF (x, y, y) =
1

2

∫ ∞

0

dt
√

(t+ x) (t+ y)
, (7.60)
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which is a logarithm if 0 < y < x and an inverse circular function if 0 ≤ x <
y.

The three standard elliptic integrals in (7.56)–(7.58) can be written in
terms of symmetric integrals. For example, we have

F (φ, k) = sinφRF
(

cos2 φ, 1 − k2 sin2 φ, 1
)

. (7.61)

For further details we refer to [55, §11.4] and to the work of B.C. Carl-
son, who wrote very efficient algorithms for the computation of Legendre’s
standard elliptic integrals, also for complex parameters [18, 19, 20].

7.9 Best rational approximations

In the theory of best rational approximation (which includes the best poly-
nomial of approximation) the goal is to find a rational function that approx-
imates a function f on a finite real interval as best as possible. The rational
approximations can be written in the form

Nn
m(x)

Dn
m(x)

=
a0 + a1x+ · · · + anx

n

b0 + b1x+ · · · + bmxm
. (7.62)

The characterization of the best approximation to a function f may
be given in terms of oscillations of the error curve. Let R = N/D be an
irreducible rational function of the form (7.62). A necessary and sufficient
condition that R be the best approximation to f is that the error function
R(x)−f(x) exhibits at least 2+max{m+∂N, n+∂D} points of alternation.
(Here ∂P denotes the degree of the polynomial P .) For the proof see [76].

For the elementary and well-known higher transcendental functions the
polynomials in the best rational approximations are not explicitly known,
and the coefficients of these polynomials should be computed by an algo-
rithm. This algorithm is not as simple as the one for computing coefficients
in Chebyshev series (see §4) or Padé approximants (which can be based on
solving a set of linear equations). For best approximation the second al-
gorithm of Remes can be used [86, p. 176], and for a Fortran program see
[66].

For many elementary and special functions best rational approximations
have been computed. See [61] for many tables (and an explanation of the
Remes algorithm). For several other special functions we refer to the survey
[26]. Computer algebra packages, such as Maple, also have programs for
computing best rational approximants.

For flexible algorithms for special functions we prefer the method based
on Chebyshev polynomials. Chebyshev series (4.1) usually converge rapidly
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(for example, for functions in C∞ on [−1, 1]), we obtain a very good first
approximation to the polynomial pn(x) of best approximation for [−1, 1] if
we truncate (4.1) at its (n+ 1)th term. This is because

f(x) −
n
∑

k=0

′ckTk(x)
.
= cn+1Tn+1(x), (7.63)

and the right-hand side enjoys exactly those properties concerning its max-
ima and minima that are required for the polynomial of best approximation.
In practice the gain in replacing a truncated Chebyshev series expansion by
the corresponding minimax polynomial approximation is hardly worthwhile;
see [84].

Inspection of the size of the coefficients ck gives a good idea about the
applicability for a certain choice of n, and for a new choice of n the compu-
tations are easy to modify. In best approximations for each choice of n (or
of n and m in rational approximations), new coefficients have to be com-
puted by using a complicated algorithm. In addition, representations of the
polynomials in best approximations may be quite unstable.

8 Recent software and publications on methods

for computing special functions

8.1 A selection of recent software for special functions

Software packages as Mathematica, Maple, and Matlab have many excellent
algorithms in multi-length arithmetic. For large scale and high performance
computing these packages are not the optimal platforms. Also, there are
many published books with software for special functions, some with sup-
plied sources of the algorithms. We mention [8, 79, 85, 107, 111, 122]. Many
software collections on special functions are available at the web, for instance
the Cephes math library 5 and in more general repositories. 6 7

For an extensive survey of the available software for special functions we
refer to [70]. The latest update of this project appeared in December 2000.
In this section we give a selection of software for special functions published
in the period 2000-2009 (disclaimer: we provide references, but we don’t
claim that all the software listed is equally reliable).

5http://www.moshier.net
6http://www.netlib.org/
7http://gams.nist.gov/Classes.html
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Books describing published software

1. Cuyt et al. [28], a Handbook describing numerical methods for
evaluating special functions by using continued fractions. Many
tables are given based on Maple programs published elsewhere by
the group. All kinds of functions are considered: from gamma to
Gauss, confluent, generalized and basic hypergeometric functions.

2. Gautschi [37] describes routines for generating recursion coeffi-
cients of orthogonal polynomials as well as routines dealing with
applications.

3. Gil et al. [55] describes software for Airy and Scorer functions,
associated Legendre functions of integer and half-integer degrees
(including toroidal harmonics), Bessel functions (including mod-
ified Bessel functions with purely imaginary orders), parabolic
cylinder functions, and a module for computing zeros of Bessel
functions.

Gamma, error and related functions

1. Smith [100]: Fortran 90 software for floating-point multiple pre-
cision arithmetic, gamma and related functions.

2. Linhart et al. [69]: the logarithm of the normal distribution.

Bessel functions

1. Kodama [67]: all kinds of cylindrical functions of complex order
and nonnegative argument.

2. Gil et al. [47]: modified Bessel functions Iia(x) and Kia(x) for
real a and positive x.

3. Van Deun and Cools [109]: infinite range integrals of an arbitrary
product of Bessel functions.

4. Talman [102]: spherical Bessel transforms.

Airy and related functions

1. Gil et al. [44, 54]: complex Airy and Scorer functions.

2. Fabijonas [31]: complex Airy functions.

Parabolic cylinder functions
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1. Gil et al. [50]: functions U(a, x) and V (a, x) for real a and x .

Coulomb wave functions

1. Michel [77]: functions Fℓ(η, ρ) and Gℓ(η, ρ) for complex parame-
ters

2. Seaton [93]: functions Fℓ(η, ρ) and Gℓ(η, ρ).

3. Seaton [94]: Numerov integrations of Coulomb functions.

4. Noble [81]: negative energy Coulomb (Whittaker) functions.

Legendre functions

1. Gil and Segura [40, 41]: toroidal harmonics.

2. Inghoff et al. [65]: Maple procedures for the coupling of angular
momenta.

Hypergeometric functions

1. Michel and Stoitsov [78]: Gauss hypergeometric function with all
its parameters complex.

2. Colavecchia and Gasaneo [27]: Appell’s F1 function.

3. Huber and Mâıtre [63]: expanding hypergeometric functions about
half-integer parameters.

Mathieu functions

1. Alhargan [2, 3]: Mathieu functions and characteristic numbers.

2. Erricolo [30]: expansion coefficients of Mathieu functions using
Blanch’s algorithm.

8.2 Recent literature on the computation of special functions

From our website 8 a list will be soon available with recent literature from
the last ten years (2000–2009). The list can be viewed as an addition to the
bibliography of Lozier and Olver [70], and contains references to software
and papers describing methods for computing special functions. Some of
the references are mentioned in earlier sections. The following topics can be
found in the list.

8http://functions.unican.es
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1. General aspects in books and papers: continued fractions, recurrence
relations, Hadamard-type expansions, infinite products.

2. Gamma function, Barnes multiple gamma function, incomplete gamma
functions, beta distribution, error functions, exponential integrals.

3. Bessel functions, integrals of Bessel functions, series of K−Bessel func-
tion.

4. Airy functions, Airy-type integrals: oscillatory cuspoid integrals with
odd and even polynomial phase functions, Pearcy integral.

5. Hypergeometric functions: Gauss, confluent, Coulomb, Weber parabolic,
Appell.

6. Legendre functions: toroidal, conical, spherical harmonics.

7. Orthogonal polynomials, Gauss quadrature.

8. q−functions.

9. Mathieu functions.

10. Spheroidal wave functions.

11. Polylogarithms.

12. Mittag-Leffler function, Wright function.

13. Elliptic integrals, elliptic functions.

14. Riemann zeta function, Riemann theta function.

15. Bose–Einstein, Fermi–Dirac integrals.

16. Hubbell rectangular source integrals, Lambert’s W−function, leaky
aquifer function.

17. Multicenter integrals, Slater orbitals, other integrals from physics.

18. Zeros of special functions.

19. Multiprecision implementation of elementary and special functions.
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