149 research outputs found

    Assessment of the corneal collagen organization after chemical burn using second harmonic generation microscopy

    Get PDF
    The organization of the corneal stoma is modified due to different factors, including pathology, surgery or external damage. Here the changes in the organization of the corneal collagen fibers during natural healing after chemical burn are investigated using second harmonic generation (SHG) imaging. Moreover, the structure tensor (ST) was used as an objective tool for morphological analyses at different time points after burn (up to 6 months). Unlike control corneas that showed a regular distribution, the collagen pattern at 1 month of burn presented a non-organized arrangement. SHG signal levels noticeably decreased and individual fibers were hardly visible. Over time, the healing process led to a progressive re-organization of the fibers that could be quantified through the ST. At 6 months, the stroma distribution reached values similar to those of control eyes and a dominant direction of the fibers re-appeared. The present results show that SHG microscopy imaging combined with the ST method is able to objectively monitor the temporal regeneration of the corneal organization after chemical burn. Future implementations of this approach into clinically adapted devices would help to diagnose and quantify corneal changes, not only due to chemical damages, but also as a result of disease or surgical procedures

    Hydrometallurgical extraction of Li and Co from LiCoO2 particles–Experimental and Modeling

    Get PDF
    The use of lithium-ion batteries as energy storage in portable electronics and electric vehicles is increasing rapidly, which involves the consequent increase of battery waste. Hence, the development of reusing and recycling techniques is important to minimize the environmental impact of these residues and favor the circular economy goal. This paper presents experimental and modeling results for the hydrometallurgical treatment for recycling LiCoO2 cathodes from lithium-ion batteries. Previous experimental results for hydrometallurgical extraction showed that acidic leaching of LiCoO2 particles produced a non-stoichiometric extraction of lithium and cobalt. Furthermore, the maximum lithium extraction obtained experimentally seemed to be limited, reaching values of approximately 65–70%. In this paper, a physicochemical model is presented aiming to increase the understanding of the leaching process and the aforementioned limitations. The model describes the heterogeneous solid–liquid extraction mechanism and kinetics of LiCoO2 particles under a weakly reducing environment. The model presented here sets the basis for a more general theoretical framework that would describe the process under different acidic and reducing conditions. The model is validated with two sets of experiments at different conditions of acid concentration (0.1 and 2.5 M HCl) and solid to liquid ratio (5 and 50 g L−1). The COMSOL Multiphysics program was used to adjust the parameters in the kinetic model with the experimental results.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045. Paz-Garcia acknowledges financial support from the program “Proyectos I+D+i en el marco del Programa Operativo FEDER Andalucía 2014–2020”, No. UMA18-FEDERJA-279. Cerrillo-Gonzalez acknowledges the FPU grant obtained from the Spanish Ministry of Education. The University of Malaga is acknowledged for the financial support in the postdoctoral fellowship of Villen-Guzman

    Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum

    Get PDF
    We report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' at lg(E/eV)=18.519.0\lg(E/{\rm eV})=18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A>4A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Long daytime napping is associated with increased adiposity and type 2 diabetes in an elderly population with metabolic syndrome

    Get PDF
    Research examining associations between objectively-measured napping time and type 2 diabetes (T2D) is lacking. This study aimed to evaluate daytime napping in relation to T2D and adiposity measures in elderly individuals from the Mediterranean region. A cross-sectional analysis of baseline data from 2190 elderly participants with overweight/obesity and metabolic syndrome, in the PREDIMED-Plus trial, was carried out. Accelerometer-derived napping was measured. Prevalence ratios (PR) and 95% confidence intervals (CI) for T2D were obtained using multivariable-adjusted Cox regression with constant time. Linear regression models were fitted to examine associations of napping with body mass index (BMI) and waist circumference (WC). Participants napping ≥90 min had a higher prevalence of T2D (PR 1.37 (1.06, 1.78)) compared with those napping 5 to <30 min per day. Significant positive associations with BMI and WC were found in those participants napping ≥30 min as compared to those napping 5 to <30 min per day. The findings of this study suggest that longer daytime napping is associated with higher T2D prevalence and greater adiposity measures in an elderly Spanish population at high cardiovascular risk

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF
    corecore