287 research outputs found

    Spider Assemblages across Elevational and Latitudinal Gradients in the Yukon Territory, Canada

    Get PDF
    Arthropod assemblages in the Arctic are set for substantial changes in response to climate change, yet we know little about the ecological structure of many groups in the North. We tested the effects of elevation and latitude on northern spider assemblages by sampling along nine mountains across three latitudes in the Yukon Territory, Canada. Spiders were collected in 216 pitfall traps placed at four elevations along each of the nine mountains, representing 36 sites sampled across three latitudes (i.e., distinct mountain ranges). We collected 1954 individuals representing 89 species, 57 genera, and 12 families of spiders. Using nested ANOVAs, we found significant main effects of latitude, elevation, and an interaction of the two factors on species richness and abundance. Using MRPP and NMS ordination, we also found significant effects of latitude and mountain on species composition, but within each of the three latitudes, only elevation produced significant effects. Our study suggests that changes along spatial gradients associated with changes in habitat can have significant effects on the structure of spider assemblages, but responses vary among mountain ranges. We show that within a given mountain range, individual mountains may be used as spatial replicates for studies about northern arthropod assemblages.Les assemblages d’arthropodes de l’Arctique connaîtront des changements substantiels en raison du changement climatique mais malgré cela, nous en savons peu sur la structure écologique de nombreux groupes du Nord. Nous avons mis à l’épreuve les effets de l’élévation et de la latitude sur les assemblages d’araignées du Nord en prélevant des échantillons sur neuf montagnes réparties sur trois latitudes dans le territoire du Yukon, au Canada. Les araignées ont été recueillies à l’aide de 216 pièges placés à quatre élévations différentes le long de chacune des neuf montagnes, ce qui a représenté 36 emplacements échantillonnés sur trois latitudes (c’est-à-dire des chaînes de montagnes distinctes). Nous avons recueilli 1 954 individus représentant 89 espèces, 57 genres et 12 familles d’araignées. À l’aide d’analyses de variances (ANOVA), nous avons relevé d’importants effets découlant de la latitude, de l’élévation et de l’interaction de deux facteurs sur la richesse et l’abondance des espèces. Au moyen de l’ordination MRPP et NMS, nous avons également constaté que la latitude et la montagne ont des incidences considérables sur la composition des espèces, mais au sein de chacune des trois latitudes, seule l’élévation produisait des effets importants. Notre étude laisse entendre que les changements en matière de gradients spatiaux liés aux changements d’habitat peuvent avoir des effets considérables sur la structure d’assemblages d’araignées, mais les réactions varient d’une chaîne de montagne à l’autre. Nous montrons que dans une chaîne de montagne donnée, les montagnes individuelles peuvent servir de mesures spatiales en vue de l’étude d’assemblages d’arthropodes nordiques

    Primary Invasive Aspergillosis of the Digestive Tract: Report of Two Cases and Review of the Literature

    Get PDF
    BACKGROUND: Disseminated aspergillosis is thought to occur as a result of vascular invasion from the lungs with subsequent bloodstream dissemination, and portals of entry other than sinuses and/or the respiratory tract remain speculative. METHODS: We report two cases of primary aspergillosis in the digestive tract and present a detailed review of eight of the 23 previously-published cases for which detailed data are available. RESULTS AND CONCLUSION: These ten cases presented with symptoms suggestive of typhlitis, with further peritonitis requiring laparotomy and small bowel segmental resection. All cases were characterized by the absence of pulmonary disease at the time of histologically-confirmed gastrointestinal involvement with vascular invasion by branched Aspergillus hyphae. These cases suggest that the digestive tract may represent a portal of entry for Aspergillus species in immunocompromised patients

    Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects

    Get PDF
    Automated sensors have potential to standardize and expand the monitoring of insects across the globe. As one of the most scalable and fastest developing sensor technologies, we describe a framework for automated, image-based monitoring of nocturnal insects—from sensor development and field deployment to workflows for data processing and publishing. Sensors comprise a light to attract insects, a camera for collecting images and a computer for scheduling, data storage and processing. Metadata is important to describe sampling schedules that balance the capture of relevant ecological information against power and data storage limitations. Large data volumes of images from automated systems necessitate scalable and effective data processing. We describe computer vision approaches for the detection, tracking and classification of insects, including models built from existing aggregations of labelled insect images. Data from automated camera systems necessitate approaches that account for inherent biases. We advocate models that explicitly correct for bias in species occurrence or abundance estimates resulting from the imperfect detection of species or individuals present during sampling occasions. We propose ten priorities towards a step-change in automated monitoring of nocturnal insects, a vital task in the face of rapid biodiversity loss from global threats

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    Polarization Calibration of the QUaD Experiment

    Get PDF
    We describe the polarization calibration of the QUaD experiment, including determination of the polarization efficiency of the detectors and their orientation angles. QUaD is a millimeter-wavelength polarimeter that observed the Cosmic Microwave Background (CMB) from a site at the South Pole. The experiment comprises a 2.64 m Cassegrain telescope equipped with a cryogenically cooled receiver containing an array of 62 polarization-sensitive bolometers. The focal plane contains pixels at two different frequency bands, 100 GHz and 150 GHz, with angular resolutions of 5prime and 3farcm5, respectively. The high angular resolution allows observation of CMB temperature and polarization anisotropies over a wide range of scales. The instrument commenced operation in early 2005 and collected science data during three successive Austral winter seasons of observation

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore