598 research outputs found

    Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality

    Get PDF
    Simulations demonstrate that undoped yttrium iron garnet (YIG) seedlayers cause reduced Faraday rotation in silicon-on-insulator (SOI) waveguides with Ce-doped YIG claddings. Undoped seedlayers are required for the crystallization of the magneto-optical Ce:YIG claddings, but they diminish the interaction of the Ce:YIG with the guided modes. Therefore new magneto-optical garnets, terbium iron garnet (TIG) and bismuth-doped TIG (Bi:TIG), are introduced that can be integrated directly on Si and quartz substrates without seedlayers. The Faraday rotations of TIG and Bi:TIG films at 1550nm were measured to be +500 and -500°/cm, respectively. Simulations show that these new garnets have the potential to significantly mitigate the negative impact of the seedlayers under Ce:YIG claddings. The successful growth of TIG and Bi:TIG on low-index fused quartz inspired novel garnet-core waveguide isolator designs, simulated using finite difference time domain (FDTD) methods. These designs use alternating segments of positive and negative Faraday rotation for push-pull quasi phase matching in order to overcome birefringence in waveguides with rectangular cross-sections

    Thermal and herbicide tolerances of chromerid algae and their ability to form a symbiosis with corals

    Get PDF
    Reef-building corals form an obligate symbiosis with photosynthetic microalgae in the family Symbiodiniaceae that meet most of their energy requirements. This symbiosis is under threat from the unprecedented rate of ocean warming as well as the simultaneous pressure of local stressors such as poor water quality. Only 1°C above mean summer sea surface temperatures (SSTs) on the Great Barrier Reef (GBR) can trigger the loss of Symbiodiniaceae from the host, and very low concentrations of the most common herbicide, diuron, can disrupt the photosynthetic activity of microalgae. In an era of rapid environmental change, investigation into the assisted evolution of the coral holobiont is underway in an effort to enhance the resilience of corals. Apicomplexan-like microalgae were discovered in 2008 and the Phylum Chromerida (chromerids) was created. Chromerids have been isolated from corals and contain a functional photosynthetic plastid. Their discovery therefore opens a new avenue of research into the use of alternative/additional photosymbionts of corals. However, only two studies to-date have investigated the symbiotic nature of Chromera velia with corals and thus little is known about the coral-chromerid relationship. Furthermore, the response of chromerids to environmental stressors has not been examined. Here we tested the performance of four chromerid strains and the common dinofiagellate symbiont Cladocopium goreaui (formerly Symbiodinium goreaui, ITS2 type C1) in response to elevated temperature, diuron and their combined exposure. Three of the four chromerid strains exhibited high thermal tolerances and two strains showed exceptional herbicide tolerances, greater than observed for any photosynthetic microalgae, including C. goreaui. We also investigated the onset of symbiosis between the chromerids and larvae of two common GBR coral species under ambient and stress conditions. Levels of colonization of coral larvae with the chromerid strains were low compared to colonization with C. goreaui. We did not observe any overall negative or positive larval fitness effects of the inoculation with chromerid algae vs. C. goreaui. However, we cannot exclude the possibility that chromerid algae may have more important roles in later coral life stages and recommend this be the focus of future studies

    Defining and Exploring Animal Sentience

    Get PDF
    One of the commentaries on the target article notes that animal sentience is difficult to define operationally. This response to the commentaries develops a working, usable definition of animal sentience and examines the relationships between animal emotions and sentience

    Male circumcision and HIV transmission: what do we know?

    Get PDF
    Male circumcision (MC) has been shown to be protective against heterosexual HIV transmission and is being explored in some parts of the world as a means of combating the epidemic. The World Health Organization (WHO) recommends that MC be considered as an important component of HIV prevention in high prevalence settings. We review evidence that demonstrates that the inner foreskin is likely to be the main portal of entry for the HIV virus in males. Whether removal of the inner foreskin accounts for all the protection afforded by circumcision is yet to be established. The proposed mechanisms of protection range from inherent immunohistological factors of foreskin such as difference in thickness of keratin layer and density of target cells for HIV between inner and outer foreskin to physiological mechanisms that follow male circumcision such as drying of secretions underneath foreskin after sexual intercourse, loss of microbiome that attract target cells to the genital mucosa and lack of priming the genital mucosa with less abundant sexual transmitted infections among circumcised men. The aim of this review is to give an updated account on the mechanisms proposed so far on the demonstrated 50-70% protection from HIV transmission through heterosexual intercourse, by male circumcision

    N=3 Warped Compactifications

    Get PDF
    Orientifolds with three-form flux provide some of the simplest string examples of warped compactification. In this paper we show that some models of this type have the unusual feature of D=4, N=3 spacetime supersymmetry. We discuss their construction and low energy physics. Although the local form of the moduli space is fully determined by supersymmetry, to find its global form requires a careful study of the BPS spectrum.Comment: 27 pages, v2: 32pp., RevTeX4, fixed factors, slightly improved sections 3D and 4B, v3: added referenc

    Millisecond Pulsars as Probes of Mass Segregation in the Galactic Center

    Get PDF
    We propose a simple test for the existence of a cluster of black hole remnants around Sgr A* that is based on a small sample of any type of Galactic Center objects, provided they are substantially less massive than the black holes and constitute part of an old (> 1 Gyr) population. The test relies on the fact that, under the presence of such a cluster of heavy remnants and because of energy equipartition, lower mass objects would be expelled from the central regions and settle into a distribution very different than the cusp expected to be induced by the supermassive black hole alone. We show that with a sample of just 50 objects and using only their angular positions on the sky relative to Sgr A* it is possible to clearly differentiate between a distribution consistent with the presence of the cluster of black holes and a power-law cusp distribution. We argue that millisecond pulsars might currently be the best candidate to perform this test, because of the large uncertainties involved in the age determination of less exotic objects. In addition, by measuring their first and second period derivatives, millisecond pulsars offer the rare opportunity of determining the complete phase space information of the objects. We show that this extra information improves the detection of mass segregation by about 30%.Comment: 16 pages, 1 Postscript figure; version accepted for publication in Ap

    The role of discharge variability in determining alluvial stratigraphy

    Get PDF
    We illustrate the potential for using physics-based modeling to link alluvial stratigraphy to large river morphology and dynamics. Model simulations, validated using ground penetrating radar data from the RĂ­o ParanĂĄ, Argentina, demonstrate a strong relationship between bar-scale set thickness and channel depth, which applies across a wide range of river patterns and bar types. We show that hydrologic regime, indexed by discharge variability and flood duration, exerts a first-order influence on morphodynamics and hence bar set thickness, and that planform morphology alone may be a misleading variable for interpreting deposits. Indeed, our results illustrate that rivers evolving under contrasting hydrologic regimes may have very similar morphology, yet be characterized by marked differences in stratigraphy. This realization represents an important limitation on the application of established theory that links river topography to alluvial deposits, and highlights the need to obtain field evidence of discharge variability when developing paleoenvironmental reconstructions. Model simulations demonstrate the potential for deriving such evidence using metrics of paleocurrent variance

    Essential role for proteinase-activated receptor-2 in arthritis

    Get PDF
    Using physiological, pharmacological, and gene disruption approaches, we demonstrate that proteinase-activated receptor-2 (PAR-2) plays a pivotal role in mediating chronic inflammation. Using an adjuvant monoarthritis model of chronic inflammation, joint swelling was substantially inhibited in PAR-2-deficient mice, being reduced by more than fourfold compared with wild-type mice, with virtually no histological evidence of joint damage. Mice heterozygous for PAR-2 gene disruption showed an intermediate phenotype. PAR-2 expression, normally limited to endothelial cells in small arterioles, was substantially upregulated 2 weeks after induction of inflammation, both in synovium and in other periarticular tissues. PAR-2 agonists showed potent proinflammatory effects as intra-articular injection of ASKH95, a novel synthetic PAR-2 agonist, induced prolonged joint swelling and synovial hyperemia. Given the absence of the chronic inflammatory response in the PAR-2-deficient mice, our findings demonstrate a key role for PAR-2 in mediating chronic inflammation, thereby identifying a novel and important therapeutic target for the management of chronic inflammatory diseases such as rheumatoid arthritis

    The association of genetic predisposition to depressive symptoms with non-suicidal and suicidal self-Injuries

    Get PDF
    Non-suicidal and suicidal self-injury are very destructive, yet surprisingly common behaviours. Depressed mood is a major risk factor for non-suicidal self-injury (NSSI), suicidal ideation and suicide attempts. We conducted a genetic risk prediction study to examine the polygenic overlap of depressive symptoms with lifetime NSSI, suicidal ideation, and suicide attempts in a sample of 6237 Australian adult twins and their family members (3740 females, mean age\ua0=\ua042.4\ua0years). Polygenic risk scores for depressive symptoms significantly predicted suicidal ideation, and some predictive ability was found for suicide attempts; the polygenic risk scores explained a significant amount of variance in suicidal ideation (lowest p\ua0=\ua00.008, explained variance ranging from 0.10 to 0.16\ua0%) and, less consistently, in suicide attempts (lowest p\ua0=\ua00.04, explained variance ranging from 0.12 to 0.23\ua0%). Polygenic risk scores did not significantly predict NSSI. Results highlight that individuals genetically predisposed to depression are also more likely to experience suicidal ideation/behaviour, whereas we found no evidence that this is also the case for NSSI

    Photoelectrons in the Enceladus plume

    Get PDF
    The plume of Enceladus is a remarkable plasma environment containing several charged particle species. These include cold magnetospheric electrons, negative and positive water clusters, charged nanograins, and “magnetospheric photoelectrons” produced from ionization of neutrals throughout the magnetosphere near Enceladus. Here we discuss observations of a population newly identified by the Cassini Plasma Spectrometer (CAPS) electron spectrometer instrument—photoelectrons produced in the plume ionosphere itself. These were found during the E19 encounter, in the energetic particle shadow where penetrating particles are absent. Throughout E19, CAPS was oriented away from the ram direction where the clusters and nanograins are observed during other encounters. Plume photoelectrons are also clearly observed during the E9 encounter and are also seen at all other Enceladus encounters where electron spectra are available. This new population, warmer than the ambient plasma population, is distinct from, but adds to, the magnetospheric photoelectrons. Here we discuss the observations and examine the implications, including the ionization source these electrons provide
    • 

    corecore