1,304 research outputs found

    Controlling anomalous stresses in soft field-responsive systems

    Get PDF
    We report a new phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bounded dimers constituted by induced dipoles. The great variety of stress regimes includes non-monotonous behaviors, multi-resonances, negative viscosity effect and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phasesComment: 5 pages, 6 figures, submitted to PR

    Superconductivity in the Two-Band Hubbard Model in Infinite Dimensions

    Full text link
    We study a two-band Hubbard model in the limit of infinite dimensions, using a combination of analytical methods and Monte-Carlo techniques. The normal state is found to display various metal to insulators transitions as a function of doping and interaction strength. We derive self-consistent equations for the local Green's functions in the presence of superconducting long-range order, and extend previous algorithms to this case. We present direct numerical evidence that in a specific range of parameter space, the normal state is unstable against a superconducting state characterized by a strongly frequency dependent order-parameter.Comment: 12 pages (14 figures not included, available upon request), Latex, LPTENS Preprint 93/1

    Supersymmetry in carbon nanotubes in a transverse magnetic field

    Full text link
    Electron properties of Carbon nanotubes in a transverse magnetic field are studied using a model of a massless Dirac particle on a cylinder. The problem possesses supersymmetry which protects low energy states and ensures stability of the metallic behavior in arbitrarily large fields. In metallic tubes we find suppression of the Fermi velocity at half-filling and enhancement of the density of states. In semiconducting tubes the energy gap is suppressed. These features qualitatively persist (although to a smaller degree) in the presence of electron interactions. The possibilities of experimental observation of these effects are discussed.Comment: A new section on electron interaction effects added and explanation on roles of supersymmetry expanded. Revtex4, 6 EPS figure file

    What are communities of practice? A comparative review of four seminal works

    No full text
    This paper is a comparative review of four seminal works on communities of practice. It is argued that the ambiguities of the terms community and practice are a source of the concept's reusability allowing it to be reappropriated for different purposes, academic and practical. However, it is potentially confusing that the works differ so markedly in their conceptualizations of community, learning, power and change, diversity and informality. The three earlier works are underpinned by a common epistemological view, but Lave and Wenger's 1991 short monograph is often read as primarily about the socialization of newcomers into knowledge by a form of apprenticeship, while the focus in Brown and Duguid's article of the same year is, in contrast, on improvising new knowledge in an interstitial group that forms in resistance to management. Wenger's 1998 book treats communities of practice as the informal relations and understandings that develop in mutual engagement on an appropriated joint enterprise, but his focus is the impact on individual identity. The applicability of the concept to the heavily individualized and tightly managed work of the twenty-first century is questionable. The most recent work by Wenger – this time with McDermott and Snyder as coauthors – marks a distinct shift towards a managerialist stance. The proposition that managers should foster informal horizontal groups across organizational boundaries is in fact a fundamental redefinition of the concept. However it does identify a plausible, if limited, knowledge management (KM) tool. This paper discusses different interpretations of the idea of 'co-ordinating' communities of practice as a management ideology of empowerment

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Magnetic Branes in Gauss-Bonnet Gravity

    Full text link
    We present two new classes of magnetic brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static magnetic brane. We also generalize this solution to the case of spinning magnetic branes with one or more rotation parameters. We find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when all the rotation parameters are zero, the electric field vanishes, and therefore the brane has no net electric charge. For the spinning brane, when one or more rotation parameters are non zero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Again we find that the net electric charge of the branes in these spacetimes is proportional to the magnitude of the velocity of the brane. Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.

    Direct nonlinear Fourier transform algorithms for the computation of solitonic spectra in focusing nonlinear Schrödinger equation

    Get PDF
    Starting from a comparison of some established numerical algorithms for the computation of the eigenvalues (discrete or solitonic spectrum) of the non-Hermitian version of the Zakharov–Shabat spectral problem, this article delivers new algorithms that combine the best features of the existing ones and thereby allays their relative weaknesses. Our algorithm is modelled within the remit of the so-called direct nonlinear Fourier transform (NFT) associated with the focusing nonlinear Schrödinger equation. First, we present the data for the calibration of existing methods comparing the relative errors associated with the computation of the continuous NF spectrum. Then each method is paired with different numerical algorithms for finding zeros of a complex-valued function to obtain the eigenvalues. Next we describe a new class of methods based on the contour integrals evaluation for the efficient search of eigenvalues. After that we introduce a new hybrid method, one of our main results: the method combines the advances of contour integral approach and makes use of the iterative algorithms at its second stage for the refined eigenvalues search. The veracity of our new hybrid algorithm is established by estimating the convergence speed and accuracy across three independent test profiles. Along with the development of a new approach for the computation of the eigenvalues, our study also addresses the problem of computation of the so-called norming constants associated with the eigenvalues. We show that our formalism effectively amounts to accurate and fast enough computation of residues of the reflection coefficient in the upper complex half-plane of the spectral parameter

    HI in the Outskirts of Nearby Galaxies

    Full text link
    The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ\rm \Lambda cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library, Springer, in pres

    Magnetically ordered state at correlated oxide interfaces: the role of random oxygen defects

    Full text link
    Using an effective one-band Hubbard model with disorder, we consider magnetic states of the correlated oxide interfaces, where effective hole self-doping and a magnetially ordered state emerge due to electronic and ionic reconstructions. By employing the coherent potential approximation, we analyze the effect of random oxygen vacancies on the two-dimensional magnetism. We find that the random vacancies enhance the ferromagnetically ordered state and stabilize a robust magnetization above a critical vacancy concentration of about c=0.1. In the strong-correlated regime, we also obtain a nonmonotonic increase of the magnetization upon an increase of vacancy concentration and a substantial increase of the magnetic moments, which can be realized at oxygen reduced high-Tc cuprate interfaces.Comment: 8 pages, 2 figures, submitted to J Supercond Novel Magnetism (ICSM12 conference contribution
    corecore