175 research outputs found

    Algebraic approach to quantum black holes: logarithmic corrections to black hole entropy

    Full text link
    The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As shown previously, for a neutral non-rotating black hole, such eigenvalues must be 2n2^{n}-fold degenerate if one constructs the black hole stationary states by means of a pair of creation operators subject to a specific algebra. We show that the algebra of these two building blocks exhibits U(2)U(1)×SU(2)U(2)\equiv U(1)\times SU(2) symmetry, where the area operator generates the U(1) symmetry. The three generators of the SU(2) symmetry represent a {\it global} quantum number (hyperspin) of the black hole, and we show that this hyperspin must be zero. As a result, the degeneracy of the nn-th area eigenvalue is reduced to 2n/n3/22^{n}/n^{3/2} for large nn, and therefore, the logarithmic correction term 3/2logA-3/2\log A should be added to the Bekenstein-Hawking entropy. We also provide a heuristic approach explaining this result, and an evidence for the existence of {\it two} building blocks.Comment: 15 pages, Revtex, to appear in Phys. Rev.

    In-depth analysis of chloride treatments for thin-film CdTe solar cells

    Get PDF
    CdTe thin-film solar cells are now the main industrially established alternative to silicon-based photovoltaics. These cells remain reliant on the so-called chloride activation step in order to achieve high conversion efficiencies. Here, by comparison of effective and ineffective chloride treatments, we show the main role of the chloride process to be the modification of grain boundaries through chlorine accumulation, which leads an increase in the carrier lifetime. It is also demonstrated that while improvements in fill factor and short circuit current may be achieved through use of the ineffective chlorides, or indeed simple air annealing, voltage improvement is linked directly to chlorine incorporation at the grain boundaries. This suggests that focus on improved or more controlled grain boundary treatments may provide a route to achieving higher cell voltages and thus efficiencies

    Grain-Boundary Structural Relaxation in Sb2Se3{\mathrm{Sb}}_{2}{\mathrm{Se}}_{3} Thin-Film Photovoltaics

    Get PDF
    Grain boundaries play an important role in the efficiency of thin-film photovoltaics, where the absorber layer is invariably polycrystalline. Density-functional-theory simulations have previously identified a “self-healing” mechanism in Sb2Se3 that passivates the grain boundaries. During “self-healing,” extensive structural relaxation at the grain boundary removes the band-gap electronic defect states that give rise to high carrier recombination rates. In this work, lattice imaging in a transmission electron microscope is used to uncover evidence for the theoretically proposed structural relaxation in Sb2Se3. The strain measured along the [010] crystal direction is found to be dependent on the nature of the grain-boundary plane. For a (010) grain boundary, the strain and structural relaxation is minimal, since no covalent bonds are broken by termination of the grain. On the other hand, strains of up to approximately 4% extending approximately 2 nm into the grain interior are observed for a (041) grain boundary, where grain termination results in significant structural relaxation due to the ideal atomic coordination being disrupted. These results are consistent with theory and suggest that Sb2Se3 may have a high level of grain-boundary-defect tolerance

    Linear Paul trap design for an optical clock with Coulomb crystals

    Full text link
    We report on the design of a segmented linear Paul trap for optical clock applications using trapped ion Coulomb crystals. For an optical clock with an improved short-term stability and a fractional frequency uncertainty of 10^-18, we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the systematic frequency shifts of such a frequency standard. In particular, we elaborate on high precision calculations of the electric radiofrequency field of the ion trap using the finite element method. These calculations are used to find a scalable design with minimized excess micromotion of the ions at a level at which the corresponding second- order Doppler shift contributes less than 10^-18 to the relative uncertainty of the frequency standard

    Introduction to Quantum-Gravity Phenomenology

    Full text link
    After a brief review of the first phase of development of Quantum-Gravity Phenomenology, I argue that this research line is now ready to enter a more advanced phase: while at first it was legitimate to resort to heuristic order-of-magnitude estimates, which were sufficient to establish that sensitivity to Planck-scale effects can be achieved, we should now rely on detailed analyses of some reference test theories. I illustrate this point in the specific example of studies of Planck-scale modifications of the energy/momentum dispersion relation, for which I consider two test theories. Both the photon-stability analyses and the Crab-nebula synchrotron-radiation analyses, which had raised high hopes of ``beyond-Plankian'' experimental bounds, turn out to be rather ineffective in constraining the two test theories. Examples of analyses which can provide constraints of rather wide applicability are the so-called ``time-of-flight analyses'', in the context of observations of gamma-ray bursts, and the analyses of the cosmic-ray spectrum near the GZK scale.Comment: 46 pages, LaTex. Based on lectures given at the 40th Karpacz Winter School in Theoretical Physic

    A Comment or two on Holographic Dark Energy

    Full text link
    It has, quite recently, become fashionable to study a certain class of holographic-inspired models for the dark energy. These investigations have, indeed, managed to make some significant advances towards explaining the empirical data. Nonetheless, surprisingly little thought has been given to conceptual issues such as the composition and the very nature of the implicated energy source. In the current discourse, we attempt to fill this gap by the way of some speculative yet logically self-consistent arguments. Our construction takes us along a path that begins with an entanglement entropy and ends up at a Hubble-sized gas of exotic particles. Moreover, our interpretation of the dark energy turns out to be suggestive of a natural resolution to the cosmic-coincidence problem.Comment: 18 pages; (v2) an oversight in Section 2.1 is rectified and a few citations adde

    Tensor Polarization of the phi meson Photoproduced at High t

    Full text link
    As part of a measurement of the cross section of ϕ\phi meson photoproduction to high momentum transfer, we measured the polar angular decay distribution of the outgoing K+K^+ in the channel ϕK+K\phi \to K^+K^- in the ϕ\phi center-of-mass frame (the helicity frame). We find that s-channel helicity conservation (SCHC) holds in the kinematical range where tt-channel exchange dominates (up to t2.5-t \sim 2.5 GeV2^2 for EγE_{\gamma}=3.6 GeV). Above this momentum, uu-channel production of a ϕ\phi meson dominates and induces a violation of SCHC. The deduced value of the ϕNN\phi NN coupling constant lies in the upper range of previously reported values.Comment: 6 pages; 5 figure

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches
    corecore