43 research outputs found

    Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of Hot Jupiters

    Full text link
    (abbreviated) We extend the theory of close encounters of a planet on a parabolic orbit with a star to include the effects of tides induced on the central rotating star. Orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment and numerical one that are in satisfactory agreement. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5-6 stellar radii (corresponding to periods 45\sim 4-5 days after the circularisation has been completed) with tides in the star being much stronger for retrograde orbits compared to prograde orbits. We use the simple Skumanich law for the stellar rotation with its rotational period equal to one month at the age of 5Gyr. The strength of tidal interactions is characterised by circularisation time scale, tevt_{ev} defined as a time scale of evolution of the planet's semi-major axis due to tides considered as a function of orbital period PobsP_{obs} after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits is of order 1.5-2 for a planet of one Jupiter mass and PobsP_{obs}\sim four days. It grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same PorbP_{orb}. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet-planet scattering, favouring systems with retrograde orbits. The results may also be applied to the problem of tidal capture of stars in young stellar clusters.Comment: to be published in Celestial Mechanics and Dynamical Astronom

    Apse-alignment in narrow-eccentric ringlets and its implications for the ϵ-ring of Uranus and the ring system of (10199) Chariklo

    Get PDF
    The discovery of ring systems around objects of the outer Solar System provides a strong motivation to apply theoretical models in order to better estimate their physical and orbital parameters, which can constrain scenarios for their origin. We review the criterion for maintaining apse-alignment across a ring and the balance between the energy input rate provided by a close by satellite and the internal dissipation rate occurring through ring particle collisions that is required to maintain ring eccentricity, as derived from the equations of motion governing the Lagrangian-displacements of the ring-particle orbits. We use the case of the ϵ -ring of Uranus, to calibrate our theoretical discussion and illustrate the basic dynamics governing these types of ring. In the case of the ring system of (10199) Chariklo, where the evidence that the rings are eccentric is not conclusive, we apply the theory of apse-alignment to derive information about the most plausible combination of values of the surface density and eccentricity-gradient, as well as the masses and locations of their postulated but -presently undetected- shepherd-satellites. When the balance conditions that we predict are applied to the ring system of (10199) Chariklo, we are able to estimate the minimum mass of a shepherd satellite required to prevent eccentricity decay, as a function of its orbital location, for two different models of dissipation. We conclude that the satellite mass required to maintain the m  = 1 eccentric mode in the ring, would be similar or smaller than that needed to confine the rings radially. Our estimation of the most plausible combinations of eccentricity gradient and surface density consistent with apse-alignment are based on a standard model for the radial form of the surface density distribution, which approximately agrees with the optical depth profile derived by the stellar occultations. We find a diverse range of solutions, with combinations of eccentricity gradient and surface mass density that tend to minimize required enhanced collisional effects, having adopted estimated values of the form factor of the second degree harmonic of the gravitational potential.Facultad de Ciencias Astronómicas y Geofísica

    Causal Viscosity in Accretion Disc Boundary Layers

    Get PDF
    The structure of the boundary layer region between the disc and a comparatively slowly rotating star is studied using a causal prescription for viscosity. The vertically integrated viscous stress relaxes towards its equilibrium value on a relaxation timescale τ\tau, which naturally yields a finite speed of propagation for viscous information. For a standard alpha prescription with alpha in the range 0.1-0.01, and ratio of viscous speed to sound speed in the range 0.02-0.5, details in the boundary layer are strongly affected by the causality constraint. We study both steady state polytropic models and time dependent models, taking into account energy dissipation and transport. Steady state solutions are always subviscous with a variety of Ω\Omega profiles which may exhibit near discontinuities. For alpha =0.01 and small viscous speeds, the boundary layer adjusted to a near steady state. A long wavelength oscillation generated by viscous overstability could be seen at times near the outer boundary. Being confined there, the boundary layer remained almost stationary. However, for alpha =0.1 and large viscous speeds, short wavelength disturbances were seen throughout which could significantly affect the power output in the boundary layer. This could be potentially important in producing time dependent behaviour in accreting systems such as CVs and protostars.Comment: 10 LateX pages, requires lamuphys.sty and psfig.sty, 3 figures included, to appear in the Proceedings of the EARA Workshop on Accretion Disks (Garching, Oct. 96), Lecture Notes in Physic

    Structuring eccentric-narrow planetary rings

    Get PDF
    (Abridged) A simple and general description of the dynamics of a narrow eccentric ring is presented.We view an eccentric ring which precesses uniformly at a slow rate as exhibiting a global m=1m=1 mode originating from a standing wave superposed on an axisymmetric background.We adopt a continuum description using the language of fluid dynamics which gives equivalent results for the secular dynamics of thin rings as the the well known description using discrete elliptical streamlines formulated by Goldreich and Tremaine (1979). We use this to discuss the non linear mode interactions that appear through the excitation of higher mm modes due to the coupling of the m=1m=1 mode with an external satellite potential, showing that they can lead to the excitation of the m=1m=1 mode through a feedback process.Two conditions for the maintainance of a steady m=1m=1 mode are obtained. One,being the condition for the normal mode pattern to precess uniformly requires a balance between the differential precession induced by the oblateness of the central planet,self-gravity and collisional effects and is the continuum form of that obtained from the NN streamline model of Goldreich and Tremaine (1979).The other condition is for the steady maintenance of the non-zero radial action of the ring on account of the normal mode.This requires a balance between input due to eccentric resonances due to external satellites and additional collisional damping associated with the presence of the m=1m=1 mode We estimate that such a balance can occur in the ϵ\epsilon-ring of Uranus,given its currently observed physical and orbital parameters.Comment: Revised version accepted for publication in Icaru

    Warp propagation in astrophysical discs

    Full text link
    Astrophysical discs are often warped, that is, their orbital planes change with radius. This occurs whenever there is a non-axisymmetric force acting on the disc, for example the Lense-Thirring precession induced by a misaligned spinning black hole, or the gravitational pull of a misaligned companion. Such misalignments appear to be generic in astrophysics. The wide range of systems that can harbour warped discs - protostars, X-ray binaries, tidal disruption events, quasars and others - allows for a rich variety in the disc's response. Here we review the basic physics of warped discs and its implications.Comment: To be published in Astrophysical Black Holes by Haardt et al., Lecture Notes in Physics, Springer 2015. 19 pages, 2 figure

    The 1:1 resonance in Extrasolar Systems: Migration from planetary to satellite orbits

    Full text link
    We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, {\it along the family of periodic orbits} and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.Comment: to appear in Cel.Mech.Dyn.Ast

    A new analysis of the GJ581 extrasolar planetary system

    Full text link
    We have done a new analysis of the available observations for the GJ581 exoplanetary system. Today this system is controversial due to choices that can be done in the orbital determination. The main ones are the ocurrence of aliases and the additional bodies - the planets f and g - announced in Vogt et al. 2010. Any dynamical study of exoplanets requires the good knowledge of the orbital elements and the investigations involving the planet g are particularly interesting, since this body would lie in the Habitable Zone (HZ) of the star GJ581. This region,for this system, is very attractive of the dynamical point of view due to several resonances of two and three bodies present there. In this work, we investigate the conditions under which the planet g may exist. We stress the fact that the planet g is intimately related with the orbital elements of the planet d; more precisely, we conclude that it is not possible to disconnect its existence from the determination of the eccentricity of the planet d. Concerning the planet f, we have found one solution with period 450\approx 450 days, but we are judicious about any affirmation concernig this body because its signal is in the threshold of detection and the high period is in a spectral region where the ocorruence of aliases is very common. Besides, we outline some dynamical features of the habitable zone with the dynamical map and point out the role played by some resonances laying there.Comment: 12 pages, 9 figure

    On the dynamics of Extrasolar Planetary Systems under dissipation. Migration of planets

    Full text link
    We study the dynamics of planetary systems with two planets moving in the same plane, when frictional forces act on the two planets, in addition to the gravitational forces. The model of the general three-body problem is used. Different laws of friction are considered. The topology of the phase space is essential in understanding the evolution of the system. The topology is determined by the families of stable and unstable periodic orbits, both symmetric and non symmetric. It is along the stable families, or close to them, that the planets migrate when dissipative forces act. At the critical points where the stability along the family changes, there is a bifurcation of a new family of stable periodic orbits and the migration process changes route and follows the new stable family up to large eccentricities or to a chaotic region. We consider both resonant and non resonant planetary systems. The 2/1, 3/1 and 3/2 resonances are studied. The migration to larger or smaller eccentricities depends on the particular law of friction. Also, in some cases the semimajor axes increase and in other cases they are stabilized. For particular laws of friction and for special values of the parameters of the frictional forces, it is possible to have partially stationary solutions, where the eccentricities and the semimajor axes are fixed.Comment: Accepted in Celestial Mechanics and Dynamical Astronom

    Searching for star-planet magnetic interaction in CoRoT observations

    Full text link
    Close-in massive planets interact with their host stars through tidal and magnetic mechanisms. In this paper, we review circumstantial evidence for star-planet interaction as revealed by the photospheric magnetic activity in some of the CoRoT planet-hosting stars, notably CoRoT-2, CoRoT-4, and CoRoT-6. The phenomena are discussed in the general framework of activity-induced features in stars accompanied by hot Jupiters. The theoretical mechanisms proposed to explain the activity enhancements possibly related with hot Jupiter are also briefly reviewed with an emphasis on the possible effects at photospheric level. The unique advantages of CoRoT and Kepler observations to test these models are pointed out.Comment: Invited review paper accepted by Astrophysics and Space Science, 13 pages, 5 figure
    corecore