115 research outputs found

    Interaction effects at the magnetic-field induced metal-insulator transition in Si/SiGe superlattices

    Full text link
    A metal-insulator transition was induced by in-plane magnetic fields up to 27 T in homogeneously Sb-doped Si/SiGe superlattice structures. The localisation is not observed for perpendicular magnetic fields. A comparison with magnetoconductivity investigations in the weakly localised regime shows that the delocalising effect originates from the interaction-induced spin-triplet term in the particle-hole diffusion channel. It is expected that this term, possibly together with the singlet particle-particle contribution, is of general importance in disordered n-type Si bulk and heterostructures.Comment: 5 pages, 3 figures, Solid State Communications, in prin

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Stratospheric Odd Nitrogen: Measurements of HNO3, NO and O3 near 54°N in Winter

    No full text
    Data obtained during three stratospheric measurement campaigns from Cold Lake, Alberta (100.0°W, 54.4°N), in February 1977, 1978, and 1979 are presented. Altitude profiles of NO, HNO3, O3, CFM‐11, CFM‐12, and N2O and ground‐based total column measurements of NO2 were obtained and are compared with similar measurements made at 51°N in summer. The winter data demonstrate enhanced variability when compared with summer conditions, but in general in winter (1) there is a greater abundance of HNO3 and the stratospheric layer is thicker, (2) there is less nitric oxide particularly in the 18‐ to 28‐km region and the vertical distributions are characterized by strong mixing ratio gradients, and (3) the column abundance of NO2 is lower and exhibits a diurnal change qualitatively similar to that observed in summer. The difference between the summer and winter observations is not solely due to changes in photochemistry but requires consideration of stratospheric dynamics. We correlate the reduction in NO x in winter with the production of N2O5 in regions of little or no insolation followed by transport to Cold Lake. The unusual profiles are shown to result from air masses at different altitudes having either different origins, for example, polar or mid‐latitude, or different transit times from the source to the sampling point
    • 

    corecore