593 research outputs found
Recommended from our members
The interplay of fractures and sedimentary architecture: Natural gas from reservoirs in the Molina sandstones, Piceance Basin, Colorado
The Molina Member of the Wasatch Formation produces natural gas from several fields along the Colorado River in the Piceance Basin, northwestern Colorado. The Molina Member is a distinctive sandstone that was deposited in a unique fluvial environment of shallow-water floods. This is recorded by the dominance of plane-parallel bedding in many of the sandstones. The Molina sandstones crop out on the western edge of the basin, and have been projected into the subsurface and across the basin to correlate with thinner sandy units of the Wasatch Formation at the eastern side of the basin. Detailed study, however, has shown that the sedimentary characteristics of the type-section Molina sandstones are incompatible with a model in which the eastern sandstones are its distal facies equivalent. Rather, the eastern sandstones represent separate and unrelated sedimentary systems that prograded into the basin from nearby source-area highlands. Therefore, only the subsurface {open_quotes}Molina{close_quotes} reservoirs that are in close proximity to the western edge of the basin are continuous with the type-section sandstones. Reservoirs in the Grand Valley and Rulison gas fields were deposited in separate fluvial systems. These sandstones contain more typical fluvial sedimentary structures such as crossbeds and lateral accretion surfaces. Natural fractures play an important role in enhancing the conductivity and permeability of the Molina and related sandstones of the Wasatch Formation
Recommended from our members
Conjugate fracture pairs in the Molina Member of the Wasatch Formation, Piceance basin, Colorado: Implications for fracture origins and hydrocarbon production/exploration
The sandstones of the Molina Member of the Wasatch Formation in the Piceance basin of northwestern Colorado contain a suite of fractures that have a conjugate-pair geometry. The fractures are vertical and intersect at an acute angle of between 20 and 40 degrees. Although direct evidence of shear is rare, the fracture surfaces commonly display small steps. The fracture geometries suggest that the maximum compressive stress during fracturing was in the plane of the acute angle of the conjugate fractures: the steps are interpreted as broken-face manifestations of very low angle en echelon fractures, formed within exceptionally narrow zones of incipient shear. In contrast to the highly anisotropic permeability enhancement created by subparallel vertical extension fractures in the underlying Mesaverde Formation, the conjugate pairs in the Molina sandstones should create a well connected and relatively isotropic mesh of fracture conductivity. Increases in stress magnitudes and anisotropy during production drawdown of reservoir pressures should cause shear offsets along the fractures, initially enhancing permeability
Recommended from our members
Permeability reduction by pyrobitumen, mineralization, and stress along large natural fractures in sandstones at 18,300 ft. depth: Destruction of a reservoir
Production of gas from the Frontier Formation at 18,300 R depth in the Frewen No. 4 Deep well, eastern Green River basin (Wyoming), was uneconomic despite the presence of numerous open natural fractures. Initial production tested at 500 MCFD, but dropped from 360 MCFD to 140 MCFD during a 10-day production test, and the well was abandoned. Examination of the fractures in the core suggests several probable reasons for this poor production. One factor is the presence of a hydrocarbon residue (carbon) which filled much of the porosity left in the smaller fractures after mineralization. An equally important factor is probably the reorientation of the in situ horizontal compressive stress to a trend normal to the main fractures, and which now acts to close fracture apertures rapidly during reservoir drawdown. This data set has unpleasant implications for the search for similar, deep fractured reservoirs
Structural and optical properties of Er implanted AlN thin films: green and infrared photoluminescence at room temperature
In this work erbium ions were implanted into AlN films grown on sapphire with fluence range: (0.5-2) × 1015 at/cm-2, ion energy range: 150-350 keV and tilt angle: 0°, 10°, 20°, 30°. The optical and structural properties of the films are studied by means of photoluminescence and Raman spectroscopy in combination with Rutherford backscattering/channeling (RBS/C) measurements. The photoluminescence spectra of the Er3+ were recorded in the visible and infrared region between 9 and 300 K after thermal annealing treatments of the samples. The emission spectrum of the AlN:Er films consists of two series of green lines centered at 538 and 558 nm with typical Er3+ emission in the infrared at 1.54 μm. The green lines have been identified as Er3+ transitions from the 2H11/2 and 4S3/2 levels to the 4I15/2 ground state. Different erbium centers in the matrix are suggested by the change of infrared photoluminescence relative intensity of some of the emission lines when different excitation wavelengths are used. The relative abundances of these centers can be varied by using different implantation parameters. The Raman and RBS/C measurements show good crystalline quality for all the studied films.PTDC/CTM/100756/2008SFRH/BD/45774/2008Portuguese Agency GRICESBrazilian Agency CAPES the Grant 172/0
Atmospheric Channel Characteristics for Quantum Communication with Continuous Polarization Variables
We investigate the properties of an atmospheric channel for free space
quantum communication with continuous polarization variables. In our
prepare-and-measure setup, coherent polarization states are transmitted through
an atmospheric quantum channel of 100m length on the roof of our institute's
building. The signal states are measured by homodyne detection with the help of
a local oscillator (LO) which propagates in the same spatial mode as the
signal, orthogonally polarized to it. Thus the interference of signal and LO is
excellent and atmospheric fluctuations are autocompensated. The LO also acts as
spatial and spectral filter, which allows for unrestrained daylight operation.
Important characteristics for our system are atmospheric channel influences
that could cause polarization, intensity and position excess noise. Therefore
we study these influences in detail. Our results indicate that the channel is
suitable for our quantum communication system in most weather conditions.Comment: 6 pages, 4 figures, submitted to Applied Physics B following an
invitation for the special issue "Selected Papers Presented at the 2009
Spring Meeting of the Quantum Optics and Photonics Section of the German
Physical Society
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
A simple and robust adaptive controller for detuning correction in field-oriented induction machines
The size of the proton - closing in on the radius puzzle
We analyze the recent electron-proton scattering data from Mainz using a
dispersive framework that respects the constraints from analyticity and
unitarity on the nucleon structure. We also perform a continued fraction
analysis of these data. We find a small electric proton charge radius, r_E^p =
0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic
hydrogen measurements and earlier dispersive analyses. We also extract the
proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with
earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on
continued fractions modified, conclusions on the proton charge radius
unchanged, version accepted for publication in European Physical Journal
Measuring teaching quality and student engagement in South Korea and The Netherlands
Six observation scales for measuring the skills of teachers and 1 scale for measuring student engagement, assessed in South Korea and The Netherlands, are sufficiently reliable and offer sufficient predictive value for student engagement. A multigroup confirmatory factor analysis shows that the factor loadings and intercepts of the scales are the same, within acceptable boundaries, in both countries. Therefore, we can compare the average scores of teachers in both countries in a reliable and valid way. The 289 Dutch teachers score significantly better on “creating a safe and stimulating learning climate” and “intensive and activating teaching” and almost significantly on “efficient classroom management”. We find no significant differences in “clear and structured instruction”. The 375 South Korean teachers perform significantly better than the Dutch teachers on “teaching learning strategies” and almost significantly on “differentiating instruction”. Furthermore, we find better student engagement in South Korea
Opinion dynamics: models, extensions and external effects
Recently, social phenomena have received a lot of attention not only from
social scientists, but also from physicists, mathematicians and computer
scientists, in the emerging interdisciplinary field of complex system science.
Opinion dynamics is one of the processes studied, since opinions are the
drivers of human behaviour, and play a crucial role in many global challenges
that our complex world and societies are facing: global financial crises,
global pandemics, growth of cities, urbanisation and migration patterns, and
last but not least important, climate change and environmental sustainability
and protection. Opinion formation is a complex process affected by the
interplay of different elements, including the individual predisposition, the
influence of positive and negative peer interaction (social networks playing a
crucial role in this respect), the information each individual is exposed to,
and many others. Several models inspired from those in use in physics have been
developed to encompass many of these elements, and to allow for the
identification of the mechanisms involved in the opinion formation process and
the understanding of their role, with the practical aim of simulating opinion
formation and spreading under various conditions. These modelling schemes range
from binary simple models such as the voter model, to multi-dimensional
continuous approaches. Here, we provide a review of recent methods, focusing on
models employing both peer interaction and external information, and
emphasising the role that less studied mechanisms, such as disagreement, has in
driving the opinion dynamics. [...]Comment: 42 pages, 6 figure
- …