18 research outputs found

    The Wide Field Spectrograph (WiFeS)

    Full text link
    This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent thoughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320-950 nm wavelength region. It provides a 25x38 arcsec. field with 0.5 arcsec. sampling along each of twenty five 38X1 arcsec slitlets. The output format is optimized to match the 4096x4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of "interleaved nod-and-shuffle" will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) > 30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.Comment: Accepted for publication in Astrophysics & Space Science, 16 pages, 14 figure

    Euclid: Superluminous supernovae in the Deep Survey

    Get PDF
    Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z ~ 4 and therefore, offer the possibility of probing the distant Universe. Aims. We aim to investigate the possibility of detecting SLSNe-I using ESA’s Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods. We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. To estimate the uncertainties, we calculated their distribution with two different set-ups, namely optimistic and pessimistic, adopting different star formation densities and rates. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. Results. We show that Euclid should detect approximately 140 high-quality SLSNe-I to z ~ 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z > 1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. Conclusions. We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both astrophysics and cosmology.Acknowledgements. We thank the internal EC referees (P. Nugent and J. Brichmann) as well as the many comments from our EC colleagues and friends. C.I. thanks Chris Frohmaier and Szymon Prajs for useful discussions about supernova rates. C.I. and R.C.N. thank Mark Cropper for helpful information about the V IS instrument. C.I. thanks the organisers and participants of the Munich Institute for Astro- and Particle Physics (MIAPP) workshop “Superluminous supernovae in the next decade” for stimulating discussions and the provided online material. The Euclid Consortium acknowledges the European Space Agency and the support of a number of agencies and institutes that have supported the development of Euclid. A detailed complete list is available on the Euclid web site (http://www.euclid-ec.org). In particular the Agenzia Spaziale Italiana, the Centre National dEtudes Spatiales, the Deutsches Zentrum für Luft- and Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciênca e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, The Netherlandse Onderzoekschool Voor Astronomie, the Norvegian Space Center, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), the United Kingdom Space Agency, and the University of Helsinki. R.C.N. acknowledges partial support from the UK Space Agency. D.S. acknowledges the Faculty of Technology of the University of Portsmouth for support during his PhD studies. C.I. and S.J.S. acknowledge funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. [291222]. C.I. and M.S. acknowledge support from EU/FP7-ERC grant No. [615929]. E.C. acknowledge financial contribution from the agreement ASI/INAF/I/023/12/0. The work by KJ and others at MPIA on NISP was supported by the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) under grant 50QE1202. M.B. and S.C. acknowledge financial contribution from the agreement ASI/INAF I/023/12/1. R.T. acknowledges funding from the Spanish Ministerio de Economía y Competitividad under the grant ESP2015-69020-C2- 2-R. I.T. acknowledges support from Fundação para a Ciência e a Tecnologia (FCT) through the research grant UID/FIS/04434/2013 and IF/01518/2014. J.R. was supported by JPL, which is run under a contract for NASA by Caltech and by NASA ROSES grant 12-EUCLID12-0004

    A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) VIII. Modeling ram pressure stripping of diffuse gas in the Virgo cluster spiral galaxy NGC 4330

    Get PDF
    NGC 4330 is one of the Virgo galaxies whose UV emission distributions show a tail structure. An associated tail structure is also observed in the HI and Hα emission distributions. Previous dynamical modeling has shown that the galaxy is approaching the cluster center and is therefore undergoing increasing ram pressure stripping. Recent stellar population fitting of deep optical spectra together with multiband photometry led to the determination of the time when star formation was quenched in the galactic disk. We introduce a new version of the dynamical model that includes not only the dense neutral gas, but also the diffuse ionized gas, and we aim to reproduce the HI, Hα, and UV distributions together with the star formation histories of the outer gas-free parts of the galactic disk. We present the results of 50 simulations with five different Lorentzian temporal ram pressure profiles and five different delays between the simulation onset and peak ram pressure. The delays were introduced to study the influence of galactic structure on the outcome of the simulations. The inclusion of diffuse gas stripping significantly changes the HI, UV, and Hα emission distributions. The simulations with diffuse gas stripping naturally led to vertical low surface density filaments in the downwind region of the galactic disk. These filaments occur less frequently in the simulations without diffuse gas stripping. The simulations with diffuse gas stripping led to better joint fits to the spectral energy distributions (SEDs) and optical spectra. The HI, near-UV, and Hα morphologies of the model snapshots that best reproduce the SEDs and optical spectra are sufficiently different to permit a selection of best-fit models. We conclude that the inclusion of diffuse gas stripping significantly improves the resemb+lance between the model and observations. Our preferred model yields a time to peak ram pressure of 140 Myr in the future. The spatial coincidence of the radio continuum and diffuse Hα tails suggests that both gas phases are stripped together. We suggest that the star formation in the outer tail is sporadic and low level, and this explains the absence of a significant amount of cosmic ray electrons there. Furthermore, we suggest that the mixed interstellar medium is ionized by collisions with the thermal electrons of the ambient intracluster medium, which confines the filaments

    A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE): VI. Environmental quenching on HII-region scales

    Get PDF
    The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band Hα + [NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada-French-Hawaii telescope. We use a new set of data extracted from VESTIGE to study the impact of the hostile cluster environment on the star formation process down to the scale of HII regions (∼50 pc). Here, HII regions are identified and their parameters measured using the HIIPHOT code on a sample of 114 late-type galaxies spanning a wide range in morphological type (Sa-Sd, Im, BCD), stellar mass (106.5 ≤ Mstar ≤ 1011 M⊙), and star formation activity (10−3 ≤ SFR ≤ 10 M⊙ yr−1). Owing to the exquisite average resolution of the VESTIGE data (0.65 arcsec), we detect 11302 HII regions with an Hα luminosity L(Hα) ≥ 1037 erg s−1. We show that the typical number of HII regions in gas-stripped objects is significantly lower than in healthy late-types of similar stellar mass. We also show that in these gas-stripped galaxies the number of HII regions significantly drops outside the effective radius, suggesting that the quenching process occurs outside-in, in agreement with other multifrequency observations. These new results consistently confirm that the main mechanism responsible for the decrease of the star formation activity observed in cluster galaxies is ram pressure, allowing us to discard other milder processes such as starvation or strangulation, which are unable to reproduce the observed radially truncated profiles

    Spectacular tails of ionized gas in the Virgo cluster galaxy NGC 4569

    Get PDF
    Context. Using MegaCam at the CFHT, we obtained a deep narrow band Hα+[NII] wide-field image of NGC 4569 (M90), the brightest late-type galaxy in the Virgo cluster. The image reveals the presence of long tails of diffuse ionized gas, without any associated stellar component extending from the disc of the galaxy up to ≃80 kpc (projected distance) and with a typical surface brightness of a few 10-18 erg s-1 cm-2 arcsec-2. These features provide direct evidence that NGC 4569 is undergoing a ram-presure stripping event. The image also shows a prominent 8 kpc spur of ionized gas that is associated with the nucleus that spectroscopic data identify as an outflow. With some assumptions on the 3D distribution of the gas, we use the Hα surface brightness of these extended low-surface brightness features to derive the density and the mass of the gas that has been stripped during the interaction of the galaxy with the intracluster medium. The comparison with ad hoc chemo-spectrophotometric models of galaxy evolution indicates that the mass of the Hα emitting gas in the tail is a large fraction of that of the cold phase that has been stripped from the disc, suggesting that the gas is ionized within the tail during the stripping process. The lack of star-forming regions suggests that mechanisms other than photoionization are responsible for the excitation of the gas (shocks, heat conduction, magneto hydrodynamic waves). This analysis indicates that ram pressure stripping is efficient in massive (Mstar ≃ 1010.5 M⊙) galaxies located in intermediate-mass (≃1014 M⊙) clusters under formation. It also shows that the mass of gas expelled by the nuclear outflow is only ~1% than that removed during the ram pressure stripping event.Together these results indicate that ram pressure stripping, rather than starvation through nuclear feedback, can be the dominant mechanism that is responsible for the quenching of the star formation activity of galaxies in high density environments

    A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE)XIV. Main-sequence relation in a rich environment down to Mstar ≃ 106 M⊙

    No full text
    Using a compilation of H α fluxes for 384 star-forming galaxies detected during the Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE), we study several important scaling relations linking the star formation rate, specific star formation rate, stellar mass, stellar mass surface density, and atomic gas depletion timescale for a complete sample of galaxies in a rich environment. The extraordinary sensitivity of the narrow-band imaging data allows us to sample the whole dynamic range of the H α luminosity function, from massive galaxies ( M star ≃ 10 11 M ⊙ ) to dwarf systems ( M star ≃ 10 6 M ⊙ ), where the ionised gas emission is due to the emission of single O-early B stars. This extends previous works to a dynamic range in stellar mass and star formation rate (10 −4 ≲ SFR ≲ 10 M ⊙ yr −1 ) that has never been explored so far. The main-sequence relation derived for all star-forming galaxies within one virial radius of the Virgo cluster has a slope comparable to that observed in other nearby samples of isolated objects, but its dispersion is about three times larger (∼1 dex). The dispersion is tightly connected to the available amount of HI gas, with gas-poor systems located far below objects of similar stellar mass, but with a normal HI content. When measured on unperturbed galaxies with a normal HI gas content (HI-def ≤ 0.4), the relation has a slope a = 0.92 ± 0.06, an intercept b = −1.57 ± 0.06 (at a pivot point of log M star = 8.451 M ⊙ ), and a scatter σ ≃ 0.40, and it has a constant slope in the stellar mass range 10 6 ≲ M star ≲ 3 × 10 11 M ⊙ . The specific star formation rate of HI-poor galaxies is significantly lower than that of HI-rich systems of similar stellar mass, while their atomic gas consumption timescale τ HI is fairly similar, in particular, for objects of stellar mass 10 7 ≲ M star ≲ 10 9 M ⊙ . We compare these observational results to the prediction of models expressly tuned to reproduce the effects induced by the interaction of galaxies with their surrounding environment. The observed scatter in the main-sequence relation can be reproduced only after a violent and active stripping process such as ram-pressure stripping that removes gas from the disc (outer parts first) and quenches star formation on short (< 1 Gyr) timescales. This rules out milder processes such as starvation. This interpretation is also consistent with the position of galaxies of different star formation activity and gas content within the phase-space diagram. We also show that the star-forming regions that formed in the stripped material outside perturbed galaxies are located well above the main-sequence relation drawn by unperturbed systems. These extraplanar HII regions, which might be at the origin of ultra-compact dwarf galaxies (UCDs) and other compact sources typical in rich environments, are living a starburst phase lasting only ≲50 Myr. They later become quiescent systems

    The Next Generation Virgo Cluster Survey. IV. NGC 4216: A bombarded spiral in the virgo cluster

    No full text
    The final stages of mass assembly of present-day massive galaxies are expected to occur through the accretion of multiple satellites. Cosmological simulations thus predict a high frequency of stellar streams resulting from this mass accretion around the massive galaxies in the Local Volume. Such tidal streams are difficult to observe, especially in dense cluster environments, where they are readily destroyed. We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird telescope. Using the deeper, higher-resolution, and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already cataloged Virgo Cluster Catalog dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g-i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of the so-called pre-processing before it gets affected by the cluster environment, or in a group which already ventured toward the central regions of Virgo Cluster. In any case, compared to the other spiral galaxies in the Virgo Cluster, but also to those located in lower density environments, NGC 4216 seems to suffer an unusually heavy bombardment. Further studies will be needed to determine whether, given the surface brightness limit of our survey, about 29 mag arcsec-2, the number of observed streams around that galaxy is as predicted by cosmological simulations or conversely, whether the possible lack of similar structures in other galaxies poses a challenge to the merger-based model of galaxy mass assembly. \ua9 2013. The American Astronomical Society. All rights reserved.Peer reviewed: YesNRC publication: Ye

    A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE): V. properties of the ionised gas filament of M 87

    Get PDF
    We observed the giant elliptical galaxy M 87 during the Virgo Environmental Survey Tracing Galaxy Evolution (VESTIGE), a blind narrow-band Hα+[NII] imaging survey of the Virgo cluster carried out with MegaCam at the Canada French Hawaii Telescope (CFHT). The deep narrow-band image confirmed the presence of a filament of ionised gas extending up to ≃3 kpc in the north-western direction and ≃8 kpc to the southeast, with a couple of plumes of ionised gas, the weakest of which, at ≃18 kpc from the nucleus, was previously unknown. The analysis of deep optical images taken from the NGVS survey confirms that this gas filament is associated with dust seen in absorption which is now detected up to ≃2.4 kpc from the nucleus. We also analysed the physical and kinematical properties of the ionised gas filament using deep IFU MUSE data covering the central 4.8 × 4.8 kpc2 of the galaxy. The spectroscopic data confirm a perturbed kinematics of the ionised gas, with differences in velocity of ≃700–800 km s−1 on scales of ≲1 kpc. The analysis of 2D diagnostic diagrams and the observed relationship between the shock-sensitive [OI]/Hα line ratio and the velocity dispersion of the gas suggest that the gas is shock-ionised

    A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) II. Constraining the quenching time in the stripped galaxy NGC 4330

    Get PDF
    The Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) is a blind narrow-band Hα + [NII] imaging survey carried out with MegaCam at the Canada-France-Hawaii Telescope. During pilot observations taken in the spring of 2016 we observed NGC 4330, an intermediate mass (M* ≃ 109.8 M⊙) edge-on star forming spiral currently falling into the core of the Virgo cluster. While previous Hα observations showed a clumpy complex of ionised gas knots outside the galaxy disc, new deep observations revealed a low surface brightness ~10 kpc tail exhibiting a peculiar filamentary structure. The filaments are remarkably parallel to one another and clearly indicate the direction of motion of the galaxy in the Virgo potential. Motivated by the detection of these features which indicate ongoing gas stripping, we collected literature photometry in 15 bands from the far-UV to the far-IR and deep optical long-slit spectroscopy using the FORS2 instrument at the ESO Very Large Telescope. Using a newly developed Monte Carlo code that jointly fits spectroscopy and photometry, we reconstructed the star formation histories in apertures along the major axis of the galaxy. Our results have been validated against the output of CIGALE, a fitting code which has been previously used for similar studies. We found a clear outside-in gradient with radius of the time when the quenching event started: the outermost radii were stripped ~500 Myr ago, while the stripping reached the inner 5 kpc from the centre in the last 100 Myr. Regions at even smaller radii are currently still forming stars fueled by the presence of HI and H2 gas. When compared to statistical studies of the quenching timescales in the local Universe we find that ram pressure stripping of the cold gas is an effective mechanism to reduce the transformation times for galaxies falling into massive clusters. Future systematic studies of all the active galaxies observed by VESTIGE in the Virgo cluster will extend these results to a robust statistical framework
    corecore