505 research outputs found

    Reclassering voor psychisch gestoorde delictplegers in Nederland, nu en in de toekomst

    Get PDF
    Geen samenvatting beschikbaa

    Presubiculum stimulation in vivo evokes distinct oscillations in superficial and deep entorhinal cortex layers in chronic epileptic rats

    Get PDF
    The characteristic cell loss in layer III of the medial entorhinal area (MEA-III) in human mesial temporal lobe epilepsy is reproduced in the rat kainate model of the disease. To understand how this cell loss affects the functional properties of the MEA, we investigated whether projections from the presubiculum (prS), providing a main input to the MEA-III, are altered in this epileptic rat model. Injections of an anterograde tracer in the prS revealed bilateral projection fibers mainly to the MEA-III in both control and chronic epileptic rats. We further examined the prS-MEA circuitry using a 16-channel electrode probe covering the MEA in anesthetized control and chronic epileptic rats. With a second 16-channel probe, we recorded signals in the hippocampus. Current source density analysis indicated that, after prS double-pulse stimulation, afterdischarges in the form of oscillations (20-45 Hz) occurred that were confined to the superficial layers of the MEA in all epileptic rats displaying MEA-III neuronal loss. Slower oscillations (theta range) were occasionally observed in the deep MEA layers and the dentate gyrus. This kind of oscillation was never observed in control rats. We conclude that dynamical changes occur in an extensive network within the temporal lobe in epileptic rats, manifested as different kinds of oscillations, the characteristics of which depend on local properties of particular subareas. These findings emphasize the significance of the entorhinal cortex in temporal lobe epilepsy and suggest that the superficial cell layers could play an important role in distributing oscillatory activity.status: publishe

    Impact of dynamic computed tomographic angiography on endograft sizing for endovascular aneurysm repair.

    Get PDF
    Contains fulltext : 80349.pdf (publisher's version ) (Open Access)PURPOSE: To quantify dynamic changes in aortoiliac dimensions using dynamic electrocardiographically (ECG)-gated computed tomographic angiography (CTA) and to investigate any potential impact on preoperative endograft sizing in relation to observer variability. METHODS: Dynamic ECG-gated CTA was performed in 18 patients with abdominal aortic aneurysms. Postprocessing resulted in 11 datasets per patient: 1 static CTA and 10 dynamic CTA series. Vessel diameter, length, and angulation were measured for all phases of the cardiac cycle. The differences between diastolic and systolic aneurysm dimensions were analyzed for significance using paired t tests. To assess intraobserver variability, 20 randomly selected datasets were analyzed twice. Intraobserver repeatability coefficients (RC) were calculated using Bland-Altman analysis. RESULTS: Mean aortic diameter at the proximal neck was 21.4+/-3.0 mm at diastole and 23.2+/-2.9 mm at systole, a mean increase of 1.8+/-0.4 mm (8.5%, p<0.01). The RC for the aortic diameter at the level of the proximal aneurysm neck was 1.9 mm (8.9%). At the distal sealing zones, the mean increase in diameter was 1.7+/-0.3 mm (14.1%, p<0.01) for the right and 1.8+/-0.5 mm (14.2%, p<0.01) for the left common iliac artery (CIA). At both distal sealing zones, the mean increase in CIA diameter exceeded the RC (10.0% for the right CIA and 12.6% for the left CIA). CONCLUSION: The observed changes in aneurysm dimension during the cardiac cycle are small and in the range of intraobserver variability, so dynamic changes in proximal aneurysm neck diameter and aneurysm length likely have little impact on preoperative endograft selection. However, changes in diameter at the distal sealing zones may be relevant to sizing, so distal oversizing of up to 20% should be considered to prevent distal type I endoleak
    • …
    corecore