103 research outputs found

    Attachment Styles Within the Coach-Athlete Dyad: Preliminary Investigation and Assessment Development

    Get PDF
    The present preliminary study aimed to develop and examine the psychometric properties of a new sport-specific self-report instrument designed to assess athletes’ and coaches’ attachment styles. The development and initial validation comprised three main phases. In Phase 1, a pool of items was generated based on pre-existing self-report attachment instruments, modified to reflect a coach and an athlete’s style of attachment. In Phase 2, the content validity of the items was assessed by a panel of experts. A final scale was developed and administered to 405 coaches and 298 athletes (N = 703 participants). In Phase 3, confirmatory factor analysis of the obtained data was conducted to determine the final items of the Coach-Athlete Attachment Scale (CAAS). Confirmatory factor analysis revealed acceptable goodness of fit indexes for a 3-first order factor model as well as a 2-first order factor model for both the athlete and the coach data, respectively. A secure attachment style positively predicted relationship satisfaction, while an insecure attachment style was a negative predictor of relationship satisfaction. The CAAS revealed initial psychometric properties of content, factorial, and predictive validity, as well as reliability

    Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows

    Get PDF
    In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids

    Out of equilibrium: understanding cosmological evolution to lower-entropy states

    Get PDF
    Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure
    corecore