13 research outputs found

    Interpretation of seasonal changes of xylem embolism and hydraulic resistance in Fagus sylvatica.

    No full text
    The annual course of xylem embolism in twigs of adult beech trees was monitored, and compared to concurrent changes of tree water status and hydraulic resistances. Xylem embolism was quantified in 1-year-old apical twigs by the hydraulic conductivity as a percentage of the maximum measured after removal of air emboli. Tree and root hydraulic resistances were estimated from water potential differences and sap flux measurements. The considerable degree of twig embolism found in winter (up to 90% loss of hydraulic conductivity) may be attributed to the effect of freeze-thaw cycles in the xylem. A partial recovery from winter embolism occurred in spring, probably because of the production of new functional xylem. Xylem embolism fluctuated around 50% throughout the summer, without significant changes. Almost complete refilling of apical twigs was observed early in autumn. A significant negative correlation was found between xylem embolism and precipitation; thus, an active role of rainfall in embolism reversion is hypothesized. Tree and root hydraulic resistances were found to change throughout the growing period. A marked decrease of hydraulic resistance preceded the refilling of apical twigs in the autumn. Most of the decrease in total tree resistance was estimated to be located in the root compartment

    Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE‐CHRONO reconstruction

    Get PDF
    The BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British–Irish Ice Sheet between 31 000 and 15 000 years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500 days of field investigation yielding 18 000 km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8 m sea level equivalent occurred at 23 ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22 ka. The tipping point of deglaciation at 22 ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British–Irish Ice Sheet is now the world’s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling
    corecore