49 research outputs found

    Measurements and modeling of type-I and type-II ELMs heat flux to the DIII-D divertor

    Get PDF
    Type-I and type-II edge-localized-modes (ELMs) heat flux profiles measured at the DIII-D divertor feature a peak in the vicinity of the strike-point and a plateau in the scrape-off-layer (SOL), which extends to the first wall. The plateau is present in attached and detached divertors and it is found to originate with plasma bursts upstream in the SOL. The integrated ELM heat flux is distributed at ∼65% in the peak and ∼35% in this plateau. The parallel loss model, currently used at ITER to predict power loads to the walls, is benchmarked using these results in the primary and secondary divertors with unprecedented constraints using experimental input data for ELM size, radial velocity, energy, electron temperature and density, heat flux footprints and number of filaments. The model can reproduce the experimental near-SOL peak within ∼20%, but cannot match the SOL plateau. Employing a two-component approach for the ELM radial velocity, as guided by intermittent data, the full radial heat flux profile can be well matched. The ELM-averaged radial velocity at the separatrix, which explains profile widening, increases from ∼0.2 km s−1 in attached to ∼0.8 km s−1 in detached scenarios, as the ELM filaments’ path becomes electrically disconnected from the sheath at the target. The results presented here indicate filaments fragmentation as a possible mechanism for ELM transport to the far-SOL and provide evidence on the beneficial role of detachment to mitigate ELM flux in the divertor far-SOL. However, these findings imply that wall regions far from the strike points in future machines should be designed to withstand significant heat flux, even for small-ELM regimes

    Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    Full text link

    Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond

    Get PDF
    The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device’s unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly non-inductive H-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power ‘starvation’ reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached L-mode phase, increasing the outer connection length reduces the in–out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variable-configuration baffles and possibly divertor pumping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECRH and 1 MW neutral beam injection heating will be added

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Parallel convection and E × B drifts in the TCV snowflake divertor and their effects on target heat-fluxes

    No full text
    Parallel convection and E × B drifts act together to redistribute heat between the strike-points mechanisms is enhanced near the secondary X-point and is shown to dominate over heat in the low field side snowflake minus (LFS SF−). The cumulative heat convection from both conduction, partly explaining why the LFS SF− distributes power more evenly than the single null (SN) or other snowflake (SF) configurations. Pressure profiles at the entrance of the divertor are strongly affected by the position of the secondary X-point and magnetic field between the outer-midplane (OMP) and the divertor entrance enhancing the role of parallel direction indicating the importance of E × B drifts. Pressure drops of up to 50% appear heat convection. The electron temperature and density profiles and the radial turbulent fluxes measured at the OMP are largely unaffected by the changes in divertor geometry, even on flux surfaces where the connection length is infinite
    corecore