2,610 research outputs found

    The Diabolo photometer and the future of ground-based millimetric bolometer devices

    Full text link
    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky noise and the number of detectors. We advocate the use of fully sampled arrays of (100 to 1000) bolometers as a big step forward in the millimetre continuum science. Efforts in France are briefly mentionned.Comment: 7 pages, 6 figures, to appear in the Proceedings of the 2K1BC ``Experimental Astronomy at millimeter wavelengths'', Breuil-Cervinia (AO) Italy - July 9 - 13, 2001, Eds. M. De Petris et a

    The XMM-Newton Ω\Omega Project

    Full text link
    The abundance of high-redshift galaxy clusters depends sensitively on the matter density \OmM and, to a lesser extent, on the cosmological constant Λ\Lambda. Measurements of this abundance therefore constrain these fundamental cosmological parameters, and in a manner independent and complementary to other methods, such as observations of the cosmic microwave background and distance measurements. Cluster abundance is best measured by the X-ray temperature function, as opposed to luminosity, because temperature and mass are tightly correlated, as demonstrated by numerical simulations. Taking advantage of the sensitivity of XMM-Newton, our Guaranteed Time program aims at measuring the temperature of the highest redshift (z>0.4) SHARC clusters, with the ultimate goal of constraining both \OmM and Λ\Lambda.Comment: To appear in the Proceedings of the XXI Moriond Conference: Galaxy Clusters and the High Redshift Universe Observed in X-rays, edited by D. Neumann, F. Durret, & J. Tran Thanh Va

    Asymptotic scaling of the gluon propagtor on the lattice

    Get PDF
    We pursue the study of the high energy behaviour of the gluon propagator on the lattice in the Landau gauge in the flavorless case (n_f=0). It was shown in a precedin g paper that the gluon propagator did not reach three-loop asymptotic scaling at an energy scale as high as 5 GeV. Our present high statistics analysis includes also a simulation at β=6.8\beta=6.8 (a0.03a\simeq 0.03 fm), which allows to reach μ10\mu \simeq 10 GeV. Special care has been devoted to the finite lattice-spacing artifacts as well as to the finite volume effects, the latter being acute at β=6.8\beta=6.8 where the volume is bounded by technical limits. Our main conclusion is a strong evidence that the gluon propagator has reached three-loop asymptotic scaling, at μ\mu ranging from 5.6 GeV to 9.5 GeV. We buttress up this conclusion on several demanding criteria of asymptoticity, including scheme independence. Our fit in the 5.6 GeV to 9.5 GeV window yields ΛMSˉ=319±1420+10\Lambda^{\bar{{\rm MS}}} = 319 \pm 14 ^{+10}_{-20} MeV, in good agreement with our previous result, ΛMSˉ=295±20\Lambda^{\bar{{\rm MS}}} = 295 \pm 20 MeV, obtained from the three gluon vertex, but it is significantly above the Schr\"odinger functional method estimate : 238±19238 \pm 19 MeV. The latter difference is not understood. Confirming our previous paper, we show that a fourth loop is necessary to fit the whole (2.8÷9.52.8 \div 9.5) GeV energy window.Comment: latex-file, 19 pgs., 6 fig

    The scaling dimension of low lying Dirac eigenmodes and of the topological charge density

    Full text link
    As a quantitative measure of localization, the inverse participation ratio of low lying Dirac eigenmodes and topological charge density is calculated on quenched lattices over a wide range of lattice spacings and volumes. Since different topological objects (instantons, vortices, monopoles, and artifacts) have different co-dimension, scaling analysis provides information on the amount of each present and their correlation with the localization of low lying eigenmodes.Comment: Lattice2004(topology), Fermilab, June 21 - 26, 2004; 3 pages, 3 figure

    Implications of an arithmetical symmetry of the commutant for modular invariants

    Get PDF
    We point out the existence of an arithmetical symmetry for the commutant of the modular matrices S and T. This symmetry holds for all affine simple Lie algebras at all levels and implies the equality of certain coefficients in any modular invariant. Particularizing to SU(3)_k, we classify the modular invariant partition functions when k+3 is an integer coprime with 6 and when it is a power of either 2 or 3. Our results imply that no detailed knowledge of the commutant is needed to undertake a classification of all modular invariants.Comment: 17 pages, plain TeX, DIAS-STP-92-2

    More evidence of localization in the low-lying Dirac spectrum

    Full text link
    We have extended our computation of the inverse participation ratio of low-lying (asqtad) Dirac eigenvectors in quenched SU(3). The scaling dimension of the confining manifold is clearer and very near 3. We have also computed the 2-point correlator which further characterizes the localization.Comment: presented at Lattice2005(Topology and Confinement), Dublin, July 25-30, 2005, 6 pages, 3 figures, to appear in Proceedings of Scienc

    A Rigourous Treatment of the Lattice Renormalization Problem of F_B

    Full text link
    The BB-meson decay constant can be measured on the lattice using a 1/mb1/m_b expansion. To relate the physical quantity to Monte Carlo data one has to know the renormalization coefficient, ZZ, between the lattice operators and their continuum counterparts. We come back to this computation to resolve discrepancies found in previous calculations. We define and discuss in detail the renormalization procedure that allows the (perturbative) computation of ZZ. Comparing the one-loop calculations in the effective Lagrangian approach with the direct two-loop calculation of the two-point BB-meson correlator in the limit of large bb-quark mass, we prove that the two schemes give consistent results to order αs\alpha_s. We show that there is, however, a renormalization prescription ambiguity that can have sizeable numerical consequences. This ambiguity can be resolved in the framework of an O(a)O(a) improved calculation, and we describe the correct prescription in that case. Finally we give the numerical values of ZZ that correspond to the different types of lattice approximations discussed in the paper.Comment: 27 pages, 2 figures (Plain TeX, figures in an appended postscript file

    Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks

    Get PDF
    We present results for fBf_B, fBsf_{B_s}, fDf_D, fDsf_{D_s} and their ratios in the presence of two flavors of light sea quarks (Nf=2N_f=2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical uu, dd masses; that is, the central values are "partially quenched." A calculation using "fat-link clover" valence fermions is also discussed but is not included in our final results. We find, for example, fB=190(7)(17+24)(2+11)(0+8)f_B = 190 (7) (^{+24}_{-17}) (^{+11}_{-2}) (^{+8}_{-0}) MeV, fBs/fB=1.16(1)(2)(2)(0+4)f_{B_s}/f_B = 1.16 (1) (2) (2) (^{+4}_{-0}), fDs=241(5)(26+27)(4+9)(0+5)f_{D_s} = 241 (5) (^{+27}_{-26}) (^{+9}_{-4}) (^{+5}_{-0}) MeV, and fB/fDs=0.79(2)(4+5)(3)(0+5)f_{B}/f_{D_s} = 0.79 (2) (^{+5}_{-4}) (3) (^{+5}_{-0}), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched Nf=2N_f=2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,du,d quark masses are not very light and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral logarithms at small quark mass; central values are unchanged but one more systematic error has been added. Sections III E and V D are completely new; some changes for clarity have also been made elsewhere. 82 pages; 32 figure

    Dust Emissivity Variations In the Milky Way

    Get PDF
    Dust properties appear to vary according to the environment in which the dust evolves. Previous observational indications of these variations in the FIR and submm spectral range are scarce and limited to specific regions of the sky. To determine whether these results can be generalised to larger scales, we study the evolution in dust emissivities from the FIR to mm wavelengths, in the atomic and molecular ISM, along the Galactic plane towards the outer Galaxy. We correlate the dust FIR to mm emission with the HI and CO emission. The study is carried out using the DIRBE data from 100 to 240 mic, the Archeops data from 550 mic to 2.1 mm, and the WMAP data at 3.2 mm (W band), in regions with Galactic latitude |b| < 30 deg, over the Galactic longitude range (75 deg < l < 198 deg) observed with Archeops. In all regions studied, the emissivity spectra in both the atomic and molecular phases are steeper in the FIR (beta = 2.4) than in the submm and mm (beta = 1.5). We find significant variations in the spectral shape of the dust emissivity as a function of the dust temperature in the molecular phase. Regions of similar dust temperature in the molecular and atomic gas exhibit similar emissivity spectra. Regions where the dust is significantly colder in the molecular phase show a significant increase in emissivity for the range 100 - 550 mic. This result supports the hypothesis of grain coagulation in these regions, confirming results obtained over small fractions of the sky in previous studies and allowing us to expand these results to the cold molecular environments in general of the outer MW. We note that it is the first time that these effects have been demonstrated by direct measurement of the emissivity, while previous studies were based only on thermal arguments.Comment: 16 pages, 6 figures, accepted in A&

    Multiwavelength study of the high-latitude cloud L1642: chain of star formation

    Get PDF
    L1642 is one of the two high galactic latitude (|b| > 30deg) clouds confirmed to have active star formation. We examine the properties of this cloud, especially the large-scale structure, dust properties, and compact sources in different stages of star formation. We present high-resolution far-infrared and submm observations with the Herschel and AKARI satellites and mm observations with the AzTEC/ASTE telescope, which we combined with archive data from near- and mid-infrared (2MASS, WISE) to mm observations (Planck). The Herschel observations, combined with other data, show a sequence of objects from a cold clump to young stellar objects at different evolutionary stages. Source B-3 (2MASS J04351455-1414468) appears to be a YSO forming inside the L1642 cloud, instead of a foreground brown dwarf, as previously classified. Herschel data reveal striation in the diffuse dust emission around L1642. The western region shows striation towards NE and has a steeper column density gradient on its southern side. The densest central region has a bow-shock like structure showing compression from the west and a filamentary tail extending towards east. The differences suggest that these may be spatially distinct structures, aligned only in projection. We derive values of the dust emission cross-section per H nucleon for different regions of the cloud. Modified black-body fits to the spectral energy distribution of Herschel and Planck data give emissivity spectral index beta values 1.8-2.0 for the different regions. The compact sources have lower beta values and show an anticorrelation between T and beta. Markov chain Monte Carlo calculations demonstrate the strong anticorrelation between beta and T errors and the importance of mm Planck data in constraining the estimates. L1642 reveals a more complex structure and sequence of star formation than previously known.Comment: 22 pages, 18 figures, accepted to Astronomy & Astrophysics; abstract shortened and figures reduced for astrop
    corecore