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Abstract

We point out the existence of an arithmetical symmetry for the com-

mutant of the modular matrices S and T . This symmetry holds for all

affine simple Lie algebras at all levels and implies the equality of cer-

tain coefficients in any modular invariant. Particularizing to ̂SU(3)k,

we classify the modular invariant partition functions when k + 3 is an

integer coprime with 6 and when it is a power of either 2 or 3. Our

results imply that no detailed knowledge of the commutant is needed to

undertake a classification of all modular invariants.
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1. Introduction.

The classification of modular invariant partition functions remains one of the most

challenging problems in two–dimensional conformal field theories. Various techniques

have been set up to construct modular invariants (extensions, simple currents, au-

tomorphisms, ...), but all are lacking a completeness criterion. A conceptual under-

standing of the various modular invariants was neatly presented in [1], which puts

the aforementioned methods in a unified perspective. However, the proof that a list

of invariants is actually complete for a given theory, is a notoriously hard question,

as it involves rather difficult linear and number–theoretic problems. As far as theo-

ries with an affine Lie symmetry are concerned, a complete classification is presently

known only for the affine SU(2) algebra at all levels [2], and is equivalent to the

celebrated ADE classification. For rank two algebras, a step forward was taken in

[3], where the present authors established the complete list of invariants for theories

with an affine SU(3) symmetry, for all levels k such that the height k + 3 is a prime

number. In these cases, it was proved that there are only four invariants at each

level. The proof was based on the observation that all matrices in the commutant of

S and T are invariant when their indices are simultaneously multiplied by an integer

coprime with k + 3. Because of this symmetry, the classification problem could be

reduced to the validity of a crucial arithmetical lemma. The purpose of this note

is two–fold. First, we point out that the symmetry alluded to above is present for

any algebra at any level, and we show that it forces a series of equalities among the

coefficients of any modular invariant, physical or not. This makes an arithmetical

approach available in all cases and suggests a possible guideline into the full clas-

sification problem. It also provides a powerful tool to numerically investigate high

rank algebras. Following this path, we then extend our previous result for SU(3).

As it happens, results about the relevant arithmetical problem have appeared in the

mathematical litterature, which allow to classify the affine SU(3) partition functions

when the height is an integer coprime with 6, and when it is a power of either 2 or

3. We end with some comments about higher SU(N) invariants, based on numerical

results.

2. An arithmetical symmetry of the commutant.

The following discussion of the commutant holds for any (untwisted) affine simple

Lie algebra, but for the sake of concreteness, we treat in detail the unitary series.
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We first recall some basic facts about the representation theory for the chiral

̂SU(N)k algebra [4]. We let the height of the algebra be n = k +N . For each integer

height n ≥ N , there are but a finite number of highest–weight unitary representations,

labelled by the strictly dominant weights p of SU(N) which are in the alcôve Bn =

{p = (a1, a2, . . . , aN−1) : ai ≥ 1 and a1 + . . . + aN−1 ≤ n − 1}. The number of

weights in Bn is equal to
(

n−1
N−1

)
. We denote the corresponding (restricted) irreducible

characters by χp(τ). The weights in the alcôve are the “shifted” weights, so that the

lowest level of the affine representation (n; p) is an SU(N) representation of highest

weight λ = p− ρ, where ρ = (1, 1, . . . , 1) is half the sum of the positive roots.

It is well–known that the characters transform in a unitary representation of the

modular group of the torus, PSL(2, Z). Under the action of the two generators of this

group, we have χp(τ + 1) =
∑

p′∈Bn
Tp,p′χp′(τ) and χp(

−1
τ ) =

∑
p′∈Bn

Sp,p′χp′(τ)

with

Tp,p′ = e
( p2

2n
− N2 − 1

24

)
δp,p′ , (1.a)

Sp,p′ =
iN(N−1)/2

√
NnN−1

∑

w∈W

(detw) e
(p · w(p′)

n

)
, (1.b)

where W is the Weyl group of SU(N) and e(x) stands for exp (2iπx).

The partition function of a theory with a left–right ̂SU(N)k symmetry takes the

general form

Z(τ, τ∗) =
∑

p,p′∈Bn

[χ∗
p(τ)] Np,p′ [χp′(τ)]. (2)

Consistency of the theory on any torus requires the partition function to be mod-

ular invariant [5]. The physical interpretation of Z(τ, τ∗) as a partition function

demands in addition that the coefficients Np,p′ be all non–negative integers, and that

N(1,1,...,1),(1,1,...,1) = 1. The classification problem is then to provide, for each value

of n, the complete list of all functions Z (the “physical” modular invariants) which

satisfy:

1. Z is modular invariant,

2. the coefficients Np,p′ are non–negative integers,

3. Z is normalized by N(1,1,...,1),(1,1,...,1) = 1.

The first condition requires the matrix N to belong to the commutant of S and

T :

[N, S]p,p′ = [N, T ]p,p′ = 0, ∀ p, p′ ∈ Bn. (3)
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The commutation of N with T implies the following condition:

p2 6= p′2 mod 2n =⇒ Np,p′ = 0. (4)

The commutant of S and T can be worked out by standard techniques [2]. The

affine characters χp, originally given for p in Bn, remain well–defined on the whole

weight lattice M∗. Under the affine Weyl group, they transform as

χw(p) = (det w) χp and χp+nM = χp, (5)

where M is the co–root lattice. Because of the second property, all weights can

be taken modulo the lattice nM . The idea is then to consider the redundant set

χp for p ∈ M∗/nM , as if the first symmetry in (5) did not exist. Their modular

transformations are described by simpler matrices Ŝ and T̂ which read

T̂p,p′ = e
( p2

2n
− N2 − 1

24

)
δp,p′ and Ŝp,p′ =

iN(N−1)/2

√
NnN−1

e
(p · p′

n

)
. (6)

Because the alcôve Bn is essentially
(
M∗/nM

)
/W (up to orbits of length smaller

than N ! which label characters that are identically zero), the original S and T ma-

trices are recovered upon the folding with the Weyl group:

Sp,p′ =
∑

w∈W

(det w) Ŝp,w(p′), for p, p′ ∈ Bn, (7.a)

Sw(p),p′ = Sp,w(p′) = (det w) Sp,p′ , (7.b)

and the same for T . In this way, the first property in (5) is restored. Therefore, in

order to compute the most general matrix N in the commutant of S and T , one first

looks for the most general matrix N̂ in the commutant of Ŝ and T̂ and then folds it

with the Weyl group, like in (7).

The construction of the commutant of Ŝ and T̂ has been solved in [6]. Although

the commutant computed there is not well suited for practical calculations, it readily

displays the symmetry we want to show. (For rank two algebras, a more explicit

construction of the commutant, generalizing to all levels the simple matrices used in

[3], has been given in [7].)

We start by recalling the construction of the commutant according to the refer-

ence [6]. Let Gn = M∗/nM = ZN−2
n ×ZnN for SU(N). (Zm denotes the congruence
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classes modulo m. Its multiplicative group will be denoted by Z∗
m.) One considers

Gn as a finite Hilbert space with orthonormal basis |p〉, p ∈ Gn. A set of operators

Qp and P p are defined by

Qp|p′〉 = e
(p · p′

n

)
|p′〉, P p|p′〉 = |p + p′〉, (8.a)

Qnα = Pnα = 1 for any α ∈M. (8.b)

The operators Ŝ and T̂ act on Gn by their matrix representations (6). Defining now

the new operators {k, k′} = e
(

k·k′

2n

)
P kQk′

for pairs (k, k′) ∈ G2n × G2n, the key

observation is that Ŝ and T̂ generate an SL(2, Z) by their adjoint action on {k, k′}

Ŝ†{k, k′}Ŝ = {k′,−k} and T̂ †{k, k′}T̂ = {k, k′ − k}. (9)

Ŝ and T̂ are represented on the pairs (k, k′) by the right multiplication by
(

0
1
−1
0

)
and

(
1
0
−1
1

)
. Averaging the SL(2, Z) action on {k, k′} yields operators in the commutant

of Ŝ and T̂

IO(k,k′) =
∑

SL(2,Z2nN )

{ak + ck′, bk + dk′}. (10)

(From the definition of {k, k′}, only the coset SL(2, Z2nN) acts non–trivially.) Clearly

the operator (10) depends on (k, k′) through its orbit O(k, k′). Thus to each orbit of

SL(2, Z2nN) on G2n × G2n is associated an element of the commutant of Ŝ and T̂ .

The collection of all such elements is a generating set for the commutant.

Setting k = l mod Gn and k′ = l′ mod Gn, the explicit expression of IO(k,k′)

depends on (l, l′) only, up to the overall phase e(k·k′

2n ) which we omit:

IO(k,k′) =
∑

SL(2,Z2nN )

e
(abl2 + cdl′2 + 2bcl · l′

2n

)
P al+cl′ Qbl+dl′ . (11)

Because of (8.b), the sum in (11) can be partially worked out and reduced to a sum

over SL(2, ZnN). The way this is done depends on whether nN is even or odd. When

nN is even, we can write
(

a b
c d

)
=

(
α β
γ δ

) (
1 + nNs nNt

nNu 1 + nNs

)
, s, t, u = 0, 1, (12)

where the first matrix on the right–hand side of (12) belongs to SL(2, ZnN). The

summation over s, t, u gives zero unless Nl2 = Nl′2 = 0 mod 2 (automatically satis-

fied if N is odd), in which case one obtains

IO(k,k′) = 8
∑

SL(2,ZnN )

e
(αβl2 + γδl′2 + 2βγl · l′

2n

)
Pαl+γl′ Qβl+δl′ . (13)
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When nN is odd, we have SL(2, Z2nN) = SL(2, ZnN)×SL(2, Z2) and the decompo-

sition (12) changes accordingly. The summation over the SL(2, Z2) subgroup never

vanishes in this case and yields an expression similar to (13).

From (8.a), we find that the matrix elements of IO(k,k′) read (numerical factors

neglected)

〈p|IO(k,k′)|p′〉 =
∑

SL(2,ZnN )

e
(αβl2 + γδl′2 + 2βγl · l′ + 2(βl + δl′) · p′

2n

)
δp,p′+αl+γl′ .

(14)

Let us now observe that, for any fixed integer ν coprime with nN ,
(

α
γ

β
δ

)
in SL(2, ZnN )

is equivalent to
(

ν−1α
ν−1γ

νβ
νδ

)
in SL(2, ZnN). This change of variables allows us to

replace α, β, γ, δ by ν−1α, νβ, ν−1γ, νδ, which in turn, is equivalent to replacing

p, p′ by νp, νp′. We thus have

〈p|IO(k,k′)|p′〉 = 〈νp|IO(k,k′)|νp′〉, for any ν ∈ Z∗
nN . (15)

Equation (15) is a symmetry of any matrix N̂ in the commutant of Ŝ and T̂ , since

the operators IO(k,k′) generate it.

The symmetry (15) has a remnant at the folded level. Given two weights p and

p′ in Bn, we multiply them by an integer ν coprime with nN . We get two weights νp

and νp′ which may or may not belong to Bn, but in any case, after reducing them

modulo nM (translational part of the affine Weyl group), there will be two unique

(finite) Weyl transformations wν and w′
ν which bring them back onto two weights

of Bn, say pν and p′ν . That is pν = wν(νp) and p′ν = w′
ν(νp′), both in Bn. (The

existence of wν and w′
ν is guaranteed by ν being coprime with nN .) Then from

the symmetry (15) and the formulae (7) for the folding, we obtain at once that any

matrix Np,p′ in the commutant of S and T satisfies

Npν ,p′

ν
= (detwν)(detw′

ν) Np,p′ , for any ν ∈ Z∗
nN . (16)

This simple equation is perhaps our main result, and has far–reaching consequences

if Np,p′ is to yield a physical modular invariant. Indeed since p, p′, pν and p′ν are all

in Bn, the two matrix elements entering (16) must be positive, and hence so must

be the product of the parities of wν and w′
ν for any ν in Z∗

nN . If not, the matrix

elements Npν ,p′

ν
must vanish for all ν ∈ Z∗

nN .

The above arguments, including the construction of the commutant, can be

repeated verbatim for any simple Lie algebra. The main difference lies in the structure
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of M∗/nM as an Abelian group, which determines which factor group of SL(2, Z)

is to be summed over in (13). The height is in general defined by n = k + h, with h

the dual Coxeter number. One obtains that M∗/nM is isomorphic to the following

groups

Ak : Zk−1
n × Zn(k+1), (17.a)

Bk : Zk−2
n × Z2

2n (k even) and Zk−1
n × Z4n (k odd), (17.b)

Ck : Zk
2n, (17.c)

Dk : Zk−2
n × Z2

2n (k even) and Zk−1
n × Z4n (k odd), (17.d)

E6 : Z5
n × Z3n ; E7 : Z6

n × Z2n ; E8 : Z8
n, (17.e)

F4 : Z2
n × Z2

2n ; G2 : Zn × Z3n. (17.f)

From this follows that the summation in (13) is over SL(2, Zln) with the following

values of l: l = 1 for E8; l = 2 for B2k, Ck, D2k, E7 and F4; l = 3 for E6 and G2;

l = 4 for B2k+1 and D2k+1; l = k + 1 for Ak. The other minor difference is that the

conditions under which IO(k,k′) in (11) vanishes change, but this does not affect the

result. Therefore the relations (16) hold for any simple Lie algebra provided we let

ν vary over Z∗
ln.

3. The parity theorem for SU(N).

We now make the above result more precise for the unitary series and first indi-

cate how the determinant factors in (16) can be computed in those cases. Let

p = (a1, a2, . . . , aN−1) be a weight of SU(N). For our purpose, the following basis is

actually more convenient than the Dynkin basis. Let xi = ai + ai+1 + . . . + aN−1 for

i = 1, 2, . . . , N − 1. We can write p either in the Dynkin basis (round brackets) or in

the x–basis (square brackets):

p = (a1, a2, . . . , aN−1) ←→
{

p = [x1, x2, . . . , xN−1],

xi = ai + ai+1 + . . . + aN−1.
(18)

The alcôve corresponds to

Bn = {p = [x1, . . . , xN−1] : n > x1 > x2 > . . . > xN−1 > 0}. (19)

The virtue of this basis is to make the action of the Weyl group more transparent. If

wi denotes the reflector with respect to the i–th simple root, we obtain that

wi[x1, . . . , xi, xi+1, . . .] = [x1, . . . , xi+1, xi, . . .], for i = 1, . . . , N − 2, (20.a)

wN−1[x1, . . .] = [x1 − xN−1, x2 − xN−1, . . . , xN−2 − xN−1,−xN−1]. (20.b)
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Hence the first N − 2 reflectors generate all permutations of the xi labels. The norm

of a weight p is also much simpler: p2 = (x2
1 + . . . + x2

N−1)− 1
N (x1 + . . . + xN−1)

2.

Let p be an arbitrary weight. From the two properties,

[x1, . . . , xk + n, . . .] = [x1 + n, x2, . . .] mod nM, (21.a)

[x1 + nN, x2, . . .] = [x1, x2, . . .] mod nM, (21.b)

a set of representatives of M∗/nM is obtained for x1 ∈ ZnN and xk ∈ Zn for k =

2, . . . , N − 1. Let us write a representative as p = [〈x1〉+ jn, 〈x2〉, . . . , 〈xN−1〉] mod

nM where 〈x〉 is the residue of x modulo n, between 0 and n−1, and 0 ≤ j ≤ N −1.

There is a unique Weyl transformation w which maps p onto a weight of Bn if and

only if 〈xi〉 6= 〈xj〉 6= 0 for all i 6= j. We define the parity of p as the determinant of

w, P(p) = det w. The conditions on 〈xi〉 ensure that p is not the fixed–point of an

odd Weyl transformation, so that P(p) is well defined.

First, if j = 0, there is a permutation π of the reduced labels 〈xi〉 such that π(p)

is in Bn. The permutation π is a Weyl transformation of determinant equal to det π.

Second, the Coxeter element U = w1 w2 . . . wN−1, of determinant (−1)N−1, allows to

bring j down to 0. Indeed, if [〈x1〉, . . . , 〈xN−1〉] is in Bn, then

U(p) = [jn− 〈xN−1〉, 〈x1〉 − 〈xN−1〉, . . . , 〈xN−2〉 − 〈xN−1〉] mod nM (22)

is in Bn +[(j−1)n, 0, . . .]. By recurrence we have U j(Bn +[jn, 0, . . .]) ∈ Bn. Putting

the two pieces together, we obtain for p = [〈x1〉+ jn, 〈x2〉, . . . , 〈xN−1〉] mod nM

π[〈x1〉, . . . , 〈xN−1〉] ∈ Bn =⇒ U jπ(p) ∈ Bn. (23)

Equation (23) easily follows from π(p) = π([〈x1〉, . . . , 〈xN−1〉])+ [jn, 0, . . .] mod nM ,

a consequence of (21.a). Note that (23) implies P(p + [2n, 0, . . .]) = P(p) for any

weight p ∈ M∗, and therefore also P(p + [. . . , 0, 2n, 0, . . .]) = P(p) from (21.a).

Since U is an even transformation when N is odd, we have the stronger invariance

P(p + [. . . , 0, n, 0, . . .]) = P(p) in this case.

We thus obtain the following algorithm to compute the parity of an arbitrary

weight p = [x1, . . . , xN−1]. First reduce the labels xi modulo 2n and write xi =

〈xi〉 + ǫin mod 2n, with ǫi = 0, 1. If 〈xi〉 = 〈xj〉 for some i 6= j or if 〈xi〉 = 0 for

some i, then the parity of p is not defined. (p would label an affine character which is

identically zero.) In all other cases, find the permutation π such that n > 〈xπ(1)〉 >

. . . > 〈xπ(N−1)〉 > 0. Then the parity of p is

P(p) = (−1)(ǫ1+...+ǫN−1)(N−1) det π. (24)

7



With the parity of a weight given in (24), we obtain from (16) the following

criterion to decide whether a given coefficient Np,p′ in a physical invariant can be

non–zero. From (4), we may suppose that the norms of p and p′ are equal modulo

2n. Moreover, since the parity of p depends only on its residue modulo 2n, it is

enough to take ν in Z∗
2n (or even in Z∗

n if N is odd). Note however that, in general,

pν really depends on the residue of ν modulo nN (remember pν ∈ Bn is the image

by an affine Weyl transformation of νp, with p itself in Bn).

Parity theorem for SU(N).

Let Np,p′ a matrix describing a physical modular invariant.

Suppose p and p′ are two weights in the alcôve Bn such that p2 = p′2 mod 2n.

Then for all integers ν coprime with nN , we have Np,p′ = Npν ,p′

ν
. If the two

parities P(νp) and P(νp′) are not equal for some ν in Z∗
2n or Z∗

n for N even or

odd respectively, then Np,p′ = 0.

Although the above condition is weaker than the commutation of N with S,

which must be further checked, it is nonetheless extremely restrictive. We have

defined an action of the group Z∗
nN on the pairs of Bn ×Bn, and the theorem states

that the coefficients of a physical modular invariant are constant along each orbit.

But it is the test on the parities which makes the hard–core of the theorem. It says

when and how the symmetry may extend, and what the possible couplings between

the characters are. Taking for example p′ = (1, 1, . . . , 1) labelling the character

of the identity, the list of all p passing the test enumerates the primary fields φp

which may extend the affine SU(N) algebra to a larger one. As we will see in the

following sections, that the weights νp and νp′ have the same parity for all ν in Z∗
nN

is something rather rare, and consequently a large number of coefficients Np,p′ are

generally required to vanish.

The relations implied by the theorem are clearly satisfied by the diagonal invari-

ants, but it takes a little check to show that the parity conditions are met for the

complementary invariants [8,9]. These are constructed from the outer automorphism

µ of ̂SU(N), defined in the Dynkin basis by

µ(a1, . . . , aN−1) = (n−
∑

ai, a1, a2, . . . , aN−2) = (n, 0, . . . , 0) + U(p), (25)

and which generates a cyclic group of order N , µN = 1. The complementary invari-

ants typically couple p and µk(p) for some k. From (24), one easily checks that

P(νµk(p)) = (−1)k(ν+1)(N−1) P(νp). (26)
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Therefore the coupling Np,µk(p) 6= 0 is compatible with the parity test if k(ν+1)(N−1)

is always even, which it is if N is odd. If N is even, ν is always odd since it must be

coprime with nN .

Another example where the relations among the Np,p′ can be checked is the

exceptional invariant for SU(3), at height n = 24 [10]

E24(τ, τ∗) = |χ(1,1) + χ(5,5) + χ(7,7) + χ(11,11) + χ(1,22) + χ(22,1) + χ(5,14) + χ(14,5)

+ χ(7,10) + χ(10,7) + χ(2,11) + χ(11,2)|2 + |χ(1,11) + χ(5,7) + χ(12,1) + χ(11,12)

+ χ(12,5) + χ(7,12) + χ(11,1) + χ(7,5) + χ(1,12) + χ(12,11) + χ(5,12) + χ(12,7)|2.
(27)

Finally note that for each ν ∈ Z∗
nN , the map Mν : p → pν is invertible on Bn

and so defines a permutation of it. However the matrix (Mν)p,p′ does not qualify to

describe a physical invariant unless ν = −1. Indeed the map M−1 is just the charge

conjugation C acting by C(a1, a2, . . . , aN−1) = (aN−1, aN−2, . . . , a1).

4. The case of SU(3) when n is coprime with 6.

The equation (24) gives the parity of any weight in the x–basis. For SU(3) however,

the expression is just as easy in the Dynkin basis. If p = (〈a〉, 〈b〉) mod n, then

P(p) =

{
+1 if 〈a〉+ 〈b〉 < n,

−1 if 〈a〉+ 〈b〉 > n.
(28)

If we use the affine Dynkin basis, writing τ = (a, b, n− a− b), then the equation (28)

is equivalent to P(τ) = +1 or −1 according to whether 〈a〉+ 〈b〉+ 〈n − a − b〉 = n

or 2n. This makes it clear that the parity is invariant under any permutation of the

affine Dynkin labels. For this reason, it is better to use the affine weights, that we

generically denote by τ . τ is in Bn if its three labels are integers between 1 and n−1.

The parity theorem of Section 3 is precisely what was used in [3] to classify the

modular invariants of SU(3) when n is a prime number. Choosing τ = (1, 1, n− 2),

it was proved that for no weight τ ′ in Bn are the parities P(ντ) and P(ντ ′) equal for

all ν, except for the trivial solutions, namely τ ′ is a permutation of τ . (The equality

of the norms of the two weights was not imposed.) Although in a totally different

context, the parity theorem for SU(3), in its full power, was in fact investigated by

Koblitz and Rohrlich some fifteen years ago [11]. Their main result is as follows.

Theorem [11]. Let n an integer coprime with 6. Let τ = (a, b, n − a − b) and
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τ ′ = (a′, b′, n− a′ − b′) two weights of Bn. Then the parities of ντ and ντ ′ are equal

for every ν ∈ Z∗
n if and only if τ ′ is a permutation of τ .

This remarkable result allows the classification for the corresponding heights

without looking any further into the details of the commutant.

From the above theorem, the character of the identity representation χ(1,1) can

only couple to itself, χ(1,n−2) and χ(n−2,1). The last two possibilities are readily

excluded because the norms of the corresponding weights are not equal modulo 2n to

that of (1, 1). Therefore, any partition function looks like Z(τ, τ∗) = |χ(1,1)|2 + . . .,

which shows that the affine SU(3) symmetry does not extend. As to the other

weights, the above theorem and the norm condition imply that a weight p can only

couple to one of the following possibilities: p itself, C(p), σ(p) or to Cσ(p), where

σ(p) = µnt(p)(p), C is the charge conjugation, µ is the outer automorphism (25)

and t(p) is the triality of p. This is a local result, valid for each weight p taken

separately, but it is not difficult to show that these couplings must be global as well

(see reference [12] for more details). We thus obtain the final result that there are

only four modular invariant partition functions, the diagonal and the complementary

found in [8], given by

Np,p′ = δp′,p, and Np,p′ = δp′,σ(p), (29)

and their C–twisted version, obtained by replacing Np,p′ by Np,Cp′ . For n = 5, the

second invariant of (29) is identical to the C–conjugate of the first one.

5. Powers of 2 and 3 for SU(3).

Koblitz and Rohrlich also examined the parity theorem when n is a power of 2 or 3.

We start with the powers of 2, which is the simplest case. As in the theorem we used

in Section 4, they do not impose any condition on the norms of τ , τ ′. When n is a

power of 2, we do impose such conditions in order to make the statements simpler.

We say that the norms of τ and τ ′ do not match modulo 2n if p2 6= p′2 mod 2n for

any choice of 2–label (i.e. non–affine) weights p and p′ obtained respectively from τ

and τ ′.

Set n = 2m ≥ 16. The following result has been proved in [11]. Let τ =

(a, b, n− a− b) and τ ′ = (a′, b′, n− a′ − b′) two weights of Bn with matching norms.

Suppose in addition that gcd(τ, τ ′) = 1. Then the parities of ντ and ντ ′ are equal for

10



every ν ∈ Z∗
2m if and only if τ and τ ′ are either permutations of each other, or else

permutations, modulo n, of u(1, 1, n− 2) and u(n
2 − 1, n

2 − 1, 2) for some u ∈ Z∗
2m .

We proceed as follows. First this theorem shows that (1, 1) can only couple to

itself and to (n
2 −1, n

2 −1), which signals a possible extension of the symmetry by the

field φ( n

2
−1, n

2
−1). If (1, 1) does not couple to (n

2−1, n
2−1), i.e. N(1,1),(n/2−1,n/2−1) = 0

hence Nu(1,1),u(n/2−1,n/2−1) = 0 by the parity theorem, then the ̂SU(3) symmetry

does not extend and, using the same argument as in Section 4, the only invariants are

the diagonal and the complementary (same as in (29)), plus their C–conjugates. On

the other hand, if (1, 1) does couple to (n
2 −1, n

2 −1), then the invariant is necessarily

of the form Z(τ, τ∗) = |χ(1,1)+χ(n/2−1,n/2−1)|2+. . . (because of (16) with ν = n
2 −1),

and thus involves an extension of the symmetry. We show that this is not compatible

with modular invariance unless n = 8.

In order to do this, we look at another part of N . From the above theorem, the

weight (ǫ, n − 3), with ǫ = n mod 3, only couples to itself and its conjugate. The

corresponding 2× 2 blocks of N and S must commute, which yields

Np,p′ =

(
α β
β α

)
, for p, p′ ∈ {(ǫ, n− 3), (n− 3, ǫ)}, (30)

which is also a consequence of (16). If we now enforce the commutation [N, S]p,p′ = 0

for p in {(1, 1), (n
2 − 1, n

2 − 1)} and p′ in {(ǫ, n− 3), (n− 3, ǫ)}, we find that there is

no solution for α, β unless the equation sin 2π
n
− sin 6π

n
= 0 holds, which it does for

n = 8 only. Hence for n ≥ 16, there is no extension of the symmetry and the only

physical invariants are the diagonal and the complementary. For n = 8, it is easy

enough to check by hand that there is one exceptional invariant, given by

E8(τ, τ∗) = |χ(1,1) + χ(3,3)|2 + |χ(1,3) + χ(4,3)|2 + |χ(3,1) + χ(3,4)|2

+ |χ(1,4) + χ(4,1)|2 + |χ(2,3) + χ(6,1)|2 + |χ(3,2) + χ(1,6)|2.
(31)

The invariant (31) is the reduction of the diagonal invariant of ̂SU(6) level 1, into

which ̂SU(3) level 5 is conformally embedded [10]. Thus for all heights n = 2m ≥ 16,

there are four modular invariants in terms of the unrestricted characters, and they

are given in (29). There are six invariants for n = 8, and only two for n = 4.

Finally, we consider the powers of 3, n = 3m ≥ 9. This case is slightly more

difficult since the symmetry always extends. We start by giving the relevant result

from [11].
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Let τ = (a, b, n− a − b) and τ ′ = (a′, b′, n − a′ − b′) two weights of Bn. Then

the parities of ντ and ντ ′ are equal for every ν ∈ Z∗
3m if and only if τ and τ ′

are either permutations of each other, or else they are permutations, modulo n, of

u(3k, n
3 − 2 · 3k, 2n

3 + 3k) and u(3k+1, n
3 − 2 · 3k, 2n

3 − 3k) for some k between 0 and

m− 2 and some u ∈ Z∗
3m−k .

From this result and the equality of the norms, we obtain that the three weights

(1, 1), (n − 2, 1), (1, n− 2) can only be coupled among themselves, and the same is

true for the two weights (1,2) and (2,1). Imposing [N, S]p,p′ = 0 for p, p′ running

over these five weights leads to the following two situations. Either the symmetry

does not extend and the only invariants are the diagonal and its C–twisted version

[12], or else the symmetry extends and the partition function looks like Z(τ, τ∗) =

|χ(1,1) + χ(n−2,1) + χ(1,n−2)|2 + . . .. In the second case, Z(τ, τ∗) must be expressible

in terms of the combinations χ̃(a,b) = χ(a,b) + χ(n−a−b,a) + χ(b,n−a−b) and χ( n

3
, n

3
).

Moreover the three weights labelling the characters in χ̃(a,b) must have the same norm

modulo 2n, implying that χ̃(a,b) cannot appear if (a, b) is a weight with a non–zero

triality.

The remaining characters, χ̃(a,b) for (a, b) a root and χ( n

3
, n

3
), are the reduced

characters of an extended theory T , possessing a larger symmetry than ̂SU(3). (T
contains three different characters χ̃i

( n

3
, n

3
), i = 1, 2, 3, which all reduce to the same

affine character.) According to the results of [1], every partition function of T origi-

nates from an automorphism σ of the fusion rules of T and is necessarily of the form

(the sum also includes the χ̃i
( n

3
, n

3
))

Z(τ, τ∗) =
∑

(a,b)∈Bn∩M

[χ̃∗
(a,b)(τ)] [χ̃σ(a,b)(τ)]. (32)

Furthermore σ is a permutation that has to commute with the matrix S̃ of the

extended theory.

Let us show that the extra couplings, namely those for which the affine

weights τ and τ ′ are not permutations of each other, must be excluded. Sup-

pose the contrary, namely that the partition function is Z(τ, τ∗) = . . . +

χ̃∗
u(3k,n/3−2·3k) χ̃u(3k+1,n/3−2·3k) + . . . for some k and some u. (The only other possi-

bility is the same coupling with one of the two weights conjugated, but clearly these

two cases are both compatible with modular invariance or none of them is. Note that

instead of u(3k, n
3 −2·3k) and u(3k+1, n

3 −2·3k), we should take their residues modulo

n, themselves in Bn. It makes no difference in the following.) From the parity theo-
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rem, the above coupling cannot depend on u, so we may take u = 1. Because Z must

be of the form (32), the automorphism σ which exchanges p1 = (3k, n
3 − 2 · 3k) and

p2 = (3k+1, n
3
−2 ·3k) must leave the extended S̃ matrix invariant. In particular, one

must have S̃(1,1),p1
= S̃(1,1),p2

. But (1, 1), p1 and p2 are roots (different from (n
3 , n

3 ))

and thus these matrix elements of S̃ are just three times the same matrix elements

of S. So we obtain the same condition on the original S matrix, S(1,1),p1
= S(1,1),p2

,

which explicitly reads

sin
2π(n

3
− 3k)

n
− sin

2π3k

n
= sin

2π(n
3

+ 3k)

n
− sin

2π3k+1

n
. (33)

By using the identity sin ( 2π
3 + x) + sin x = sin ( 2π

3 − x), the equation (33) simplifies

to sin 2π3k+1

n
= 0, which is impossible on account of the inequalities 0 ≤ k ≤ m− 2.

Therefore all these ‘exceptional’ couplings are ruled out.

At this stage, we have that each extended character χ̃(a,b) can couple to itself

or to χ̃(b,a). This means that, in (32), the automorphism σ maps (a, b) onto itself or

onto (b, a), for each root (a, b) separately. However, if it is to commute with S, the

charge conjugation C can only act globally, even when it is, like here, restricted to

act on the roots of Bn only. (To obtain this, one shows that, for n = 3m, the matrix

element S(1,4),(a,b) is real if and only if a = b, b = n − 2a or a = n − 2b.) Thus the

automorphism σ is either the identity or C, leading to two and only two invariants

with an extension of the symmetry (they were already found in [9]):

Z(τ, τ∗) =
∑

(a,b)∈Bn∩M
(a,b)6=( n

3
, n

3
)

|χ̃(a,b)(τ)|2 + 3 |χ( n

3
, n

3
)|2 (34)

and its C–conjugate. Putting everything together, we obtain, for n = 3m ≥ 9, four

modular invariant partition functions in terms of the unrestricted affine characters.

Clearly, for n = 3, there is only one invariant.

6. Numerical investigation for higher ranks.

In this last section, we report on some numerical results concerning higher SU(N)

algebras. The parity theorem of Section 3 is particularly well suited for numerical

studies as the computations are at all times performed on a few integer variables (n,

ν and the Dynkin labels). It requires no large memory, unlike a systematic search

of all physical invariants. We emphasize that the list of couplings Np,p′ allowed

by the parity theorem does not classify the modular invariants. In particular, the

13



commutation with S must be separately checked. Despite this, its real power is to

reveal the heights where something special may be expected.

It is straightforward to run a computer program that examines the parity the-

orem. It only needs the formulae for the norm and the parity of a weight, both

easier in the x–basis (see Section 3). To test the parities, we note that we can let ν

range from 1 to n or to n
2

for N even or odd respectively, on account of the following

property of the parity: P((2n− ν)p) = (−1)N(N−1)/2 P(νp) for N even, 0 < ν < n,

and P((n− ν)p) = (−1)N(N−1)/2 P(νp) for N odd, 0 < ν < n
2
.

By choosing p′ = ρ = (1, 1, . . . , 1) in the parity theorem, we have looked for

heights n at which an extension of the symmetry can be expected. For SU(3) (n ≤
500), SU(4) (n ≤ 150) and SU(5) (n ≤ 100) we have listed the weights p in the alcôve

such that p2 = ρ2 = N(N2−1)
12 mod 2n and such that the parities of the ν–multiples

of ρ and p coincide for all ν. The results are more conveniently expressed in terms of

the orbits of the weights under the automorphism µ of equation (25) and the charge

conjugation C. Such orbits are in general of length 2N . We will say that two orbits

are allowed by the parity theorem to couple if each orbit contains one weight allowed

to couple with at least one weight in the other orbit. So we look for the orbits which

can couple to the orbit of the identity ρ.

In addition to its self–coupling, the orbit of the identity for SU(3) can also

couple to that of (n
2 − 1, n

2 − 1) when n is divisible by 4. It is easy to check from

(24) or (28) that the parity test is satisfied, while the equality of the norms requires

n = 0 mod 4. The surprising outcome of our numerical computation is that these

‘regular’ couplings are the only ones allowed by the parity theorem for n up to 500,

except in two cases, n = 24 and n = 60.

For n = 24, the identity can couple to (the orbits of) (1,1), (5,5), (7,7) and

(11,11). All these couplings remain allowed by the commutation with S, and lead to

the exceptional invariant of equation (27). It was numerically checked in [13] that

there is no other exceptional invariant at that height. The case n = 60 is in some

respects similar to n = 24. We find that the identity can couple to (1,1), (11,11),

(19,19) and to (29,29). However here none except the self–coupling survives the

commutation with S, so that there is no exceptional extension of the symmetry.

In all other cases, namely n 6= 24, 60, the only new extension of the symmetry

can only come from (n
2
− 1, n

2
− 1) when n is divisible by 4. Using the numerical fact
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that (1, 4) can only couple to its own orbit (not true for n = 24), we have checked

that the extension by (n
2 − 1, n

2 − 1) is not compatible with the commutation with S

unless n = 8 or n = 12, where there is indeed an exceptional invariant E8 (given in

(31)) and E12 [10].

From this, we conclude that for n ≤ 500, the only new modular invariants can

only be of the kind found in [1] at n = 12, i.e. associated to automorphisms of the

theory extended by the primary fields φ(1,n−2) and φ(n−2,1) at height n = 0 mod 3.

Combined to the results of [12], our numerical calculations prove that the list of

invariants of [10] is complete for n not divisible by 3 and smaller or equal to 500.

Before leaving SU(3), we would like to make the following remark. It may be

desirable to study the parity theorem without imposing the norm requirement, as

was done in [11]. However, numerical evidence shows that the resulting classification

of couplings (even to (1,1) only) is bound be something rather complicated when n

is even. For example, at n = 42, no less than 12 orbits can couple to the identity

if the norm matching condition is dropped, whereas only one remains (the identity

orbit with itself) if that condition is reinstalled. Strangely, the norm condition seems

to play almost no rôle when n is odd. This pattern strengthens for higher ranks.

Our next example is SU(4) with n ≤ 150. Here too we find one series of regular

couplings when n is even: the orbit of the identity can couple to that of (n
2−2, 1, n

2−2)

provided n 6= 4 mod 8 (for norm reasons). These couplings appear in the exceptional

invariants coming from conformal embeddings, at n = 8, 10 [14] and n = 12 [15].

Apart from this regular series, the situation much depends on whether n is even or

odd, as indicated above. When n is odd, we find just one case where the identity

can couple to another orbit: at n = 15, with the orbit of (1,3,4). If n is even, there

are additional couplings to the identity for most even heights up to 90. (They are

not many though: their maximal number is 4, attained at n = 30.) In the range

from 92 to 150 and presumably onwards, the only allowed couplings are those of the

above regular series. We have not investigated the question as to whether they yield

acceptable extensions.

Finally in the case of SU(5), there are three series of regular couplings, which

again appear when n is even: (1, n
2 − 2, n

2 − 2, 1) (no condition on n from the norm),

(n
2 − 3, 1, 1, n

2 − 3) (for n = 0 mod 4) and (n
2 − 3, 2, 2, n

2 − 3) (also for n = 0 mod 4).

(It is straightforward although tedious to check that they all pass the parity test for

any n.) As for SU(3) and SU(4), the couplings belonging to these regular series
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are involved in the exceptional invariants coming from conformal embeddings, in this

case at n = 8, n = 10 [14] and n = 12 [15]. As to the other couplings, the situation is

very much like in SU(4). When n is odd, there are just two heights with additional

couplings: at n = 15, the identity can couple to (1,3,4,4), and at n = 17, it can

couple to (3,3,5,4). For n even, there are generally (many) more couplings (16 more

couplings for n = 42).

In conclusion, we see that the combined requirements from the norm condition

and especially the parity test put severe constraints on the way the characters can be

coupled to form a physical modular invariant. This is even more true when the height

is an odd integer. The numerical results show that for the SU(N) series, there seems

to be a considerable difference between the even and odd heights, as already well

illustrated by SU(2) and SU(3). We note that all conformal embeddings of ̂SU(N)k

occur at even heights [16], and that the conjectured list of exceptional invariants due

to automorphisms of an extended algebra also contains even heights only [17]. We

are not aware of the existence of an exceptional invariant at an odd height, and our

results indicate that nothing exceptional is to be expected there.

7. Conclusion.

We have shown that, for any affine simple Lie algebra at any level, the (unfolded)

commutant of the modular matrices Ŝ and T̂ possesses an arithmetical symmetry.

Any matrix in the commutant is invariant when its two indices are simultaneously

multiplied by an integer coprime with ln, n being the height (level plus dual Coxeter

number) and l is an algebra dependent integer. At the folded level, this symmetry

results in a parity theorem, which says that certain coefficients of a modular invariant

must be equal, and gives a condition under which these coefficients must vanish.

This result has two main virtues. It first shows that a precise account of the

commutant is not really needed. The parity theorem precisely embodies what we

believe is its most important property. Instead, the classification of modular invari-

ants is reduced to the study of the parity theorem, which is a purely arithmetical

problem. Secondly, it opens the possibility of a much wider numerical investigation,

allowing to study high rank algebras at large levels, a thing which was so far beyond

computational feasability.

Using available results relevant to the parity theorem, we classified the SU(3)
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partitions functions when the height is coprime with 6, and when it is a power of 3

or 2.
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