1,472 research outputs found

    Experience with the LEP vacuum system at energies above 90 GeV and future expectations

    Get PDF
    The LEP storage ring has been operated at energies above 90 GeV for more than 1000 hours during 1997. Because of the rapid increase with the beam energy of the power radiated as synchrotron light, the vacuum system has been submitted to very stringent conditions as far as power evacuation and photon stimulated gas desorption are concerned. The operational experience acquired under these, up to now unexplored, conditions will be reviewed together with an outline of the limitations which were experienced at these high levels of radiation in the use of the available vacuum instrumentation. Based o n the available data detailed predictions concerning the beam lifetime, gas desorption and beam cleaning of the vacuum system under the impact of photons with a critical energy approaching 1 MeV will be formulated

    PULSED ELECTRON BEAM ANNEALING OF As AND B IMPLANTED SILICON

    No full text
    p-type (100) silicon wafers have been implanted either by As or B ions at 20 and 200 keV energies and doses of 1016cm-2. Pulsed electron beam annealing has been performed with fluences of 1.1 and 1.4 J/cm2 using a mean electron energy of 15 keV. The pulse duration was 50 ns. The annealed layers have been investigated by Rutherford backscattering under random and channeling conditions and by S.I.M.S. profiling. Good crystal regrowth and high dopant activation occur in all cases except for the 200 keV Boron implant. Impurities redistribution is observed but no significant segregation effects appear. The experimental profiles are in good agreement with a diffusion model using a modified green function solution and taking into account dopant diffusion in liquid phase and the computed melt front location. The deduced diffusion coefficient are in the 5.10-5cm2/s range for boron and 2.10-4cm2/s range for arsenic

    The LEP Vacuum System: A Summary of 10 Years of Successful Operation

    Get PDF
    he LEP accelerator is now operating regularly above 100 GeV and its vacuum system is submitted to the impact of energetic photons with a critical energy approaching 1 MeV. The consequences of this high energy on the photon induced desorption will be reviewed in the light of the various photon absorption mechanisms for aluminium. A review will also be given of the ten years of operation of the LEP vacuum system concerning more especially the evolution of the dynamic pressure with the beam dose and energy, the main difficulties experienced and the actions taken to overcome them

    Inter-vehicle gap statistics on signal-controlled crossroads

    Full text link
    We investigate a microscopical structure in a chain of cars waiting at a red signal on signal-controlled crossroads. Presented is an one-dimensional space-continuous thermodynamical model leading to an excellent agreement with the data measured.Moreover, we demonstrate that an inter-vehicle spacing distribution disclosed in relevant traffic data agrees with the thermal-balance distribution of particles in the thermodynamical traffic gas (discussed in [1]) with a high inverse temperature (corresponding to a strong traffic congestion). Therefore, as we affirm, such a system of stationary cars can be understood as a specific state of the traffic sample operating inside a congested traffic stream.Comment: 6 pages, 4 figures, accepted for publication in J. Phys. A: Math. Theo

    Ultrasonic roll bite measurements in cold rolling: Contact length and strip thickness

    Get PDF
    In cold rolling of thin metal strip, contact conditions between the work rolls and the strip are of great importance: roll deformations and their effect on strip thickness variation may lead to strip flatness defects and thickness inhomogeneity. To control the process, online process measurements are usually carried out; such as the rolling load, forward slip and strip tensions at each stand. Shape defects of the strip are usually evaluated after the last stand of a rolling mill thanks to a flatness measuring roll. However, none of these measurements is made within the roll bite itself due to the harsh conditions taking place in that area. This paper presents a sensor capable of monitoring strip thickness variations as well as roll bite length in situ and in real time. The sensor emits ultrasonic pulses that reflect from the interface between the roll and the strip. Both the time-of-flight of the pulses and the reflection coefficient (the ratio of the amplitude of the reflected signal to that of the incident signal) are recorded. The sensor system was incorporated into a work roll and tested on a pilot rolling mill. Measurements were taken as steel strips were rolled under several lubrication conditions. Strip thickness variation and roll-bite length obtained from the experimental data agree well with numerical results computed with a cold rolling model in the mixed lubrication regime

    Computed tomography porosity and spherical indentation for determining cortical bone millimetre-scale mechanical properties

    Get PDF
    The cortex of the femoral neck is a key structural element of the human body, yet there is not a reliable metric for predicting the mechanical properties of the bone in this critical region. This study explored the use of a range of non-destructive metrics to measure femoral neck cortical bone stiffness at the millimetre length scale. A range of testing methods and imaging techniques were assessed for their ability to measure or predict the mechanical properties of cortical bone samples obtained from the femoral neck of hip replacement patients. Techniques that can potentially be applied in vivo to measure bone stiffness, including computed tomography (CT), bulk wave ultrasound (BWUS) and indentation, were compared against in vitro techniques, including compression testing, density measurements and resonant ultrasound spectroscopy. Porosity, as measured by micro-CT, correlated with femoral neck cortical bone’s elastic modulus and ultimate compressive strength at the millimetre length scale. Large-tip spherical indentation also correlated with bone mechanical properties at this length scale but to a lesser extent. As the elastic mechanical properties of cortical bone correlated with porosity, we would recommend further development of technologies that can safely measure cortical porosity in vivo. Introductio

    Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Get PDF
    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and <i>Halobacteria</i>) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes <i>Alphaproteobacteria</i>, <i>Betaproteobacteria</i> and <i>Gammaproteobacteria</i> within <i>Proteobacteria</i> phylum, and also members of <i>Bacteroidetes</i> phylum. The second most abundant lineages were <i>Actinobacteria</i> and <i>Firmicutes</i> at the Gulf of Lion site and <i>Chloroflexi</i> at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: <i>Alpha-</i>, <i>Gammaproteobacteria</i>, <i>Firmicutes</i> and <i>Actinobacteria</i>. In molecular surveys, the <i>Betaproteobacteria</i> group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea <i>levee</i>. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age) strongly influenced the community structure. In contrast, within the Gulf of Lion core, characterized by a homogeneous lithological structure of upper-slope environment, most detected groups were <i>Bacteroidetes</i> and, to a lesser extent, <i>Betaproteobacteria</i>. At both site, the detection of <i>Betaproteobacteria</i> coincided with increased terrestrial inputs, as confirmed by the geochemical measurements (Si, Sr, Ti and Ca). In the Gulf of Lion, geochemical parameters were also found to drive microbial community composition. Taken together, our data suggest that the palaeoenvironmental history of erosion and deposition recorded in the Western Mediterranean Sea sediments has left its imprint on the sedimentological context for microbial habitability, and then indirectly on structure and composition of the microbial communities during the late Quaternary

    Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing

    Get PDF
    peer reviewedThis paper presents a new finite element model capable of predicting the onset of micro-plasto-hydrodynamic (MPH) lubrication and the amount of lubricant escaping from surface pockets in metal forming. The present approach is divided in two steps. First, a simulation at the macroscopic level is conducted. Then, a second simulation highlighting microscopic liquid lubrication mechanisms is achieved using boundary conditions provided by the first model. These fluid-structure interaction computations are made possible through the use of the Arbitrary Lagrangian Eulerian (ALE) formalism. The developed methodology is validated by comparison to experimental measurements conducted in plane strip drawing. The effect of physical parameters like the drawing speed, the die angle and the strip thickness reduction is investigated. The numerical results show good agreement with experiments

    Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope

    Get PDF
    The ANTARES collaboration has performed a series of {\em in situ} measurements to study the background light for a planned undersea neutrino telescope. Such background can be caused by 40^{40}K decays or by biological activity. We report on measurements at two sites in the Mediterranean Sea at depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were used to measure single counting rates and coincidence rates for pairs of tubes at various distances. The background rate is seen to consist of three components: a constant rate due to 40^{40}K decays, a continuum rate that varies on a time scale of several hours simultaneously over distances up to at least 40~m, and random bursts a few seconds long that are only correlated in time over distances of the order of a meter. A trigger requiring coincidences between nearby photomultiplier tubes should reduce the trigger rate for a neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle Physic
    • …
    corecore