27 research outputs found

    The Congolobe project, a multidisciplinary study of Congo deep-sea fan lobe complex: Overview of methods, strategies, observations and sampling

    Get PDF
    The presently active region of the Congo deep-sea fan (around 330,000 km(2)), called the terminal lobes or lobe complex, covers an area of 2500 km(2) at 4700-5100 m water depth and 750-800 km offshore. It is a unique sedimentary area in the world ocean fed by a submarine canyon and a channel-levee system which presently deliver large amounts of organic carbon originating from the Congo River by turbidity currents. This particularity is due to the deep incision of the shelf by the Congo canyon, up to 30 km into the estuary, which funnels the Congo River sediments into the deep-sea. The connection between the river and the canyon is unique for major world rivers. In 2011, two cruises (WACS leg 2 and Congolobe) were conducted to simultaneously investigate the geology, organic and inorganic geochemistry, and micro- and macro-biology of the terminal lobes of the Congo deep-sea fan. Using this multidisciplinary approach, the morpho-sedimentary features of the lobes were characterized along with the origin and reactivity of organic matter, the recycling and burial of biogenic compounds, the diversity and function of bacterial and archaeal communities within the sediment, and the biodiversity and functioning of the faunal assemblages on the seafloor. Six different sites were selected for this study: Four distributed along the active channel from the lobe complex entrance to the outer rim of the sediment deposition zone, and two positioned cross-axis and at increasing distance from the active channel, thus providing a gradient in turbidite particle delivery and sediment age. This paper aims to provide the general context of this multidisciplinary study. It describes the general features of the site and the overall sampling strategy and provides the initial habitat observations to guide the other in-depth investigations presented in this special issue. Detailed bathymetry of each sampling site using 0.1-1 m resolution multibeam obtained with a remotely operated vehicle (ROV) shows progressive widening and smoothing of the channel-levees with increasing depth and reveals a complex morphology with channel bifurcations, erosional features and massive deposits. Dense ecosystems surveyed in the study area gather high density clusters of two large-sized species of symbiotic Vesicomyidae bivalves and microbial mats. These assemblages, which are rarely observed in sedimentary zones, resemble those based on chemosynthesis at cold-seep sites, such as the active pockmarks encountered along the Congo margin, and share with these sites the dominant vesicomyid species Christineconcha regab. Sedimentation rates estimated in the lobe complex range between 0.5 and 10 cm yr(-1), which is 2-3 orders of magnitude higher than values generally encountered at abyssal depths. The bathymetry, faunal assemblages and sedimentation rates make the Congo lobe complex a highly peculiar deep-sea habitat driven by high inputs of terrigenous material delivered by the Congo channel-levee system. (c) 2016 Elsevier Ltd. All rights reserved.ZAIANGOANR Congolobe (ANR Blanc SIMI5-6) [11 BS56 030]IFREMERCEA through LSCEU.S. National Science Foundation [OCE-0831156]info:eu-repo/semantics/acceptedVersio

    Evidence for intense REE scavenging at cold seeps from the Niger Delta margin

    No full text
    International audienceFor many trace elements, continental margins are the location of intense exchange processes between sediment and seawater, which control their distribution in the water column, but have yet to be fully understood. In this study, we have investigated the impact of fluid seepage at cold seeps on the marine cycle of neodymium. We determined dissolved and total dissolvable (TD) concentrations for REE and well-established tracers of fluid seepage (CH4, TDFe, TDMn), and Nd isotopic compositions in seawater samples collected above cold seeps and a reference site (i.e. away from any fluid venting area) from the Niger Delta margin. We also analyzed cold seep authigenic phases and various core-top sediment fractions (pore water, detrital component, easily leachable phases, uncleaned foraminifera) recovered near the hydrocast stations. Methane, TDFe and TDMn concentrations clearly indicate active fluid venting at the studied seeps, with plumes rising up to about 100 m above the seafloor. Depth profiles show pronounced REE enrichments in the non-filtered samples (TD concentrations) within plumes, whereas filtered samples (dissolved concentrations) exhibit slight REE depletion in plumes relative to the overlying water column and display typical seawater REE patterns. These results suggest that the net flux of REE emitted into seawater at cold seeps is controlled by the presence of particulate phases, most probably Fe-Mn oxyhydroxides associated to resuspended sediments. At the reference site, however, our data reveal significant enrichment for dissolved REE in bottom waters, that clearly relates to diffusive benthic fluxes from surface sediments. Neodymium isotopic ratios measured in the water column range from ΔNd ~−15.7 to − 10.4. Evidence that the ΔNd values for Antarctic Intermediate waters (AAIW) differed from those reported for the same water mass at open ocean settings shows that sediment/water interactions take place in the Gulf of Guinea. At each site, however, the bottom water ΔNd signature generally differs from that for cold seep minerals, easily leachable sediment phases, and detrital fractions from local sediments, ruling out the possibility that seepage of methane-rich fluids and sediment dissolution act as a substantial source of dissolved Nd to seawater in the Gulf of Guinea. Taken together, our data hence suggest that co-precipitation of Fe-Mn oxyhydroxide phases in sub-surface sediments leads to quantitative scavenging of dissolved REE at cold seeps, preventing their emission into bottom waters. Most probably, it is likely that diffusion from suboxic surface sediments dominates the exchange processes affecting the marine Nd cycle at the Niger Delta margin

    Organic matter budget in the Southeast Atlantic continental margin close to the Congo Canyon: In situ measurements of sediment oxygen consumption

    No full text
    International audienceA study of organic carbon mineralization from the Congo continental shelf to the abyssal plain through the Congo submarine channel and Angola Margin was undertaken using in situ measurements of sediment oxygen demand as a tracer of benthic carbon recycling. Two measurement techniques were coupled on a single autonomous platform: in situ benthic chambers and microelectrodes, which provided total and diffusive oxygen uptake as well as oxygen microdistributions in porewaters. In addition, sediment trap fluxes, sediment composition (Org-C, Tot-N, CaCO3, porosity) and radionuclide profiles provided measurements of, respectively input fluxes and burial rate of organic and inorganic compounds. The in situ results show that the oxygen consumption on this margin close to the Congo River is high with values of total oxygen uptake (TOU) of 4±0.6, 3.6±0.5 mmol m−2 d−1 at 1300 and 3100 m depth, respectively, and between 1.9±0.3 and 2.4±0.2 mmol m−2 d−1 at 4000 m depth. Diffusive oxygen uptakes (DOU) were 2.8±1.1, 2.3±0.8, 0.8±0.3 and 1.2±0.1 mmol m−2 d−1, respectively at the same depths. The magnitude of the oxygen demands on the slope is correlated with water depth but is not correlated with the proximity of the submarine channel-levee system, which indicates that cross-slope transport processes are active over the entire margin. Comparison of the vertical flux of organic carbon with its mineralization and burial reveal that this lateral input is very important since the sum of recycling and burial in the sediments is 5-8 times larger than the vertical flux recorded in traps. Transfer of material from the Congo River occurs through turbidity currents channelled in the Congo valley, which are subsequently deposited in the Lobe zone in the Congo fan below 4800 m. Ship board measurements of oxygen profiles indicate large mineralization rates of organic carbon in this zone, which agrees with the high organic carbon content (3%) and the large sedimentation rate (19 mm y−1) found on this site. The Lobe region could receive as high as 19 mol C m−2 y−1, 1/3 being mineralized and 2/3 being buried and could constitute the largest depocenter of organic carbon in the South Atlantic

    The influence of Congo River discharges in the surface and deep layers of the Gulf of Guinea

    No full text
    The main feature of the Congo-Angola margin in the Gulf of Guinea is the Congo (ex-Zaire) deep-sea fan composed of a submarine canyon directly connected to the Congo River, a channel and a [sediment] lobe area. During the multi-disciplinary programme called BIOZAIRE conducted by Ifremer from 2000 to 2005, two CTD-O-2 sections with discrete water column samples were performed (BIOZAIRE3 cruise: 2003-2004) to study the influence of the Congo River discharges, both in the surface layer and in the deep and near-bottom layers. The surface layer water is greatly diluted with river water that has a heavy particle load. The deep layer is affected by episodic turbidity currents that flow in the deep Congo channel and reach deep areas far from the coast. Previous studies revealed deep anomalies in oxygen (deficit) and nutrient (excess) concentrations at similar to 4000 m depth and assumed that they resulted from mineralisation of the particulate organic matter from the Congo River. The BIOZAIRE3 sections were designed to explore these phenomena in more detail near the Congo channel. Oxygen and nutrients were measured as well as additional parameters, including stable isotopes of oxygen and carbon, dissolved inorganic carbon and pH. For the surface layer, the effect of the Congo River was studied with reference to salinity. Deviations from the theoretical dilution of various inorganic solutes suggested the occurrence of mineralisation and consumption processes. For the deep layer, the network of CTD-O-2 stations gave a more detailed description of the deep anomalies than in previous studies. From the east-west section, anomalies appeared on the bottom at 4000m depth and became slightly shallower when they spread to the west. They were also present north and south on the bottom along the 4000 m isobath. In these deep waters, the decrease in the VC values of dissolved inorganic carbon confirmed that the mineralisation of organic matter plays a role in generating these anomalies. The location of the origin of this deep anomaly is debated. Here, arguments are given in favour of mineralisation of the particulate organic matter input that overflows from the Congo channel at similar to 4000 m depth during turbidity current events. Other authors suggest that this input comes from downslope particle transport. Anomalies of the same origin, but weaker, also occurred deeper on the Congo lobe, where the Congo channel ends, but with a significant pH decrease on the bottom which was not seen at 4000 m depth

    Ferromanganese nodule fauna in the Tropical North Pacific Ocean: species richness, faunal cover and spatial distribution

    No full text
    The poorly known ferromanganese nodule fauna is a widespread hard substratum community in the deep sea that will be considerably impacted by large-scale nodule mining operations. The objective of this study was to analyze the spatial distribution of the fauna attached to nodules in the Clarion-Clipperton Fracture Zone at two scales; a regional scale that includes the east (14°N, 130°W) and the west (9°N, 150°W) zones and a local scale in which different geological facies (A, B, C and west) are recognizable. The fauna associated with 235 nodules was quantitatively described: 104 nodules from the east zone (15 of facies A, 50 of facies B and 39 of facies C) and 131 nodules from the west zone. Percent cover was used to quantify the extent of colonization at the time of sampling, for 42 species out of the 62 live species observed. Fauna covered up to 18% of exposed nodule surface with an average of about 3%. While species richness increased with exposed nodule surface, both at the regional and at the facies scales (except for facies A), total species density decreased (again except for facies A). When all nodules were included in the statistical analysis, there was no relation between faunal cover and exposed nodule surface. Nevertheless, faunal cover did decrease with exposed nodule surface for the east zone in general and for both facies B and C in particular. Species distributions among facies were significantly different but explained only a very small portion of the variance (5%). We identified two groups of associated species: a first group of two species and a second group of six species. The other species (34) were independently distributed, suggesting that species interactions play only a minor role in the spatial distribution of nodule fauna. The flux of particulate organic carbon to the bottom is the only major environmental factor considered to vary between the two zones within this study. We conclude that the higher species richness and higher percent faunal cover of the east zone can be partially attributed to greater food availability derived from surface inputs. Moreover, the surfaces of facies B and C nodules had a complex, knobby micro-relief, creating microhabitat heterogeneity that may also have contributed to the greater species richness observed in the east zone

    Habitat heterogeneity influences cold-seep macrofaunal communities within and among seeps along the Norwegian margin. Part 1: macrofaunal community structure

    No full text
    HĂ„kon Mosby mud volcano (HMMV) is one of the most active and most studied seep sites in European waters. Many authors have described its thermal activity, dynamic of mud flows, and geochemical and microbial processes. It is characterised by a concentric zonation of successive biogenic habitats related to an activity and geochemical gradient from its centre to its periphery. Around the central area covered by mud flows, white and grey microbial mats occur among areas of bare sediment, whereas siboglinid tubeworm fields of Sclerolinum contortum and/or Oligobrachia haakonmosbiensis colonise the peripheral areas. The meiofaunal community is known to be structured among habitats, but the macrofauna has rarely been investigated and has never been sampled in situ. As part of the European project HERMES, using the ROVs Victor 6000 and Quest 4000, we sampled quantitatively the different habitats of the volcano for macrofauna sensus lato, retained on a 250‐ or 500‐Όm sieve. We also sampled a newly discovered pockmark on Storegga slide (cne 5.6) and two pockmarks (G11, G12) in the Nyegga area. Macrofauna was identified and counted from phylum to family level. Our results on HMMV showed a gradient of increasing density and diversity from the volcano centre (1–3 taxa; 260 ind·m−2) to the peripheral siboglinid fields (8–14 taxa, 93,000 ind·m−2), with an intermediate situation for microbial mats. For macrofauna ≄500 Όm, non‐siboglinid polychaetes dominated the communities of the central mud volcano area, white mats and S. contortum fields (83, 89 and 37% of the total, respectively), whereas gastropods dominated grey mats and O. haakonmosbiensis fields (89 and 44% of the total, respectively). Polychaete families followed the same pattern of diversity according to habitats within HMMV. Of 23 polychaete families identified, only one occurred in the centre, and three in the microbial mats. Capitellidae and Dorvilleidae (typical of organically and sulphide‐enriched areas) occurred at remarkably high densities in white microbial mats and in O. haakonmosbiensis fields. The S. contortum fields were the most diverse habitat with 12 polychaete families. The 250‐Όm fraction showed similar taxa dominating the habitats, but taking meiofauna into account, nematodes became the major taxon in white mats and in S. contortum fields, where they were particularly large in size, whereas copepods dominated in other habitats. Meiofauna and macrofauna did not show the same patterns of density according to habitats. Using principal components analysis the habitats at HMMV were clearly distinct, and clustered according to dominant species of siboglinids and type of microbial mats. Pockmarks at Nyegga showed a similar concentric pattern of habitats around fluid sources as on the volcano, which seemed similarly to influence macrofauna composition, but at a much smaller scale. Total taxa and polychaete diversity are high in the S. contortum fields in these pockmarks as well. Regional‐scale comparisons including HMMV and Storegga suggested a higher influence of habitat‐type than seep‐site on the community structure

    Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    No full text
    International audienceMethane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densitiesof macrofauna for this depth, enhanced by a factor 7 to 8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical gradients in vesicomyid assemblages, and by the vesicomyid population characteristics that vary in density, size and composition. By modifying the sediment geochemistry differently according to their morphology and physiology, the different vesicomyid species play an important role structuring macrofauna composition and vertical distribution. Dynamics of turbiditic deposits at a longer temporal scale (thousands of years) and their spatial distribution in the lobe area also resulted in high heterogeneity of the "cold-seep-like communities". Dynamics of chemosynthetic habitats and associated macrofauna in the active lobe area 2 Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site. resembled those previously observed at the Regab pockmark along the Congo margin and rapid succession is expected to cope with high physical disturbance by frequent turbiditic events and huge sedimentation rates. Finally, we propose a model of the temporal evolution of these peculiar habitats and communities on longer timescales in response to changes in distributary channels within the lobe complex

    Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III – Sulfate- and methane- based microbial processes

    No full text
    International audienceGeochemical profiles (SO42-, H2S, CH4, ÎŽ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats
    corecore