422 research outputs found

    Receptor Mobility and Receptor-Cytoplasmic Interactions in Lymphocytes

    Full text link

    Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas

    Get PDF
    For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations

    Smy2p Participates in COPII Vesicle Formation Through the Interaction with Sec23p/Sec24p Subcomplex

    Get PDF
    The coat protein complex II (COPII) is essential for vesicle formation from the endoplasmic reticulum (ER) and is composed of two heterodimeric subcomplexes, Sec23p/Sec24p and Sec13p/Sec31p, and the small guanosine triphosphatase Sar1p. In an effort to identify novel factors that may participate in COPII vesicle formation, we isolated SMY2, a yeast gene encoding a protein of unknown function, as a multicopy suppressor of the temperature-sensitive sec24-20 mutant. We found that even a low-copy expression of SMY2 was sufficient for the suppression of the sec24-20 phenotypes, and the chromosomal deletion of SMY2 led to a severe growth defect in the sec24-20 background. In addition, SMY2 exhibited genetic interactions with several other genes involved in the ER-to-Golgi transport. Subcellular fractionation analysis showed that Smy2p was a peripheral membrane protein fractionating together with COPII components. However, Smy2p was not loaded onto COPII vesicles generated in vitro. Interestingly, coimmunoprecipitation between Smy2p and the Sec23p/Sec24p subcomplex was specifically observed in sec23-1 and sec24-20 backgrounds, suggesting that this interaction was a prerequisite for the suppression of the sec24-20 phenotypes by overexpression of SMY2. We propose that Smy2p is located on the surface of the ER and facilitates COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex

    Recombination-Mediated Host Adaptation by Avian Staphylococcus aureus

    Get PDF
    Staphylococcus aureus are globally disseminated among farmed chickens causing skeletal muscle infections, dermatitis, and septicaemia. The emergence of poultry-associated lineages has involved zoonotic transmission from humans to chickens but questions remain about the specific adaptations that promote proliferation of chicken pathogens. We characterized genetic variation in a population of genome-sequenced S. aureus isolates of poultry and humanorigin. Genealogical analysis identified a dominant poultry-associated sequence cluster within the CC5 clonal complex. Poultry and human CC5 isolates were significantly distinct from each other and more recombination events were detected in the poultry isolates. We identified 44 recombination events in 33 genes along the branch extending to the poultry-specific CC5 cluster, and 47 genes were found more often in CC5 poultry isolates compared with those from humans. Many of these gene sequences were common in chicken isolates from other clonal complexes suggesting horizontal gene transfer among poultry associated lineages. Consistent with functional predictions for putative poultry-associated genes, poultry isolates showed enhanced growth at 42 degrees C and greater erythrocyte lysis on chicken blood agar in comparison with human isolates. By combining phenotype information with evolutionary analyses of staphylococcal genomes, we provide evidence of adaptation, following a human-to-poultry host transition. This has important implications for the emergence and dissemination of new pathogenic clones associated with modern agriculture.Peer reviewe

    Biodiversity and ecosystem services science for a sustainable planet: the DIVERSITAS vision for 2012–20

    Get PDF
    DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: “Biodiversity and Ecosystem Services Science for a Sustainable Planet”. This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network — GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services — IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011–2020). This article presents the vision and its core scientific challenges.Fil: Larigauderie, Anne. DIVERSITAS. MusĂ©um National d’Histoire Naturelle; FranciaFil: Prieur Richard, Anne Helene. DIVERSITAS. MusĂ©um National d’Histoire Naturelle; FranciaFil: Mace, Georgina. Imperial College London. Center for Population Biology; Reino UnidoFil: Londsdale, Mark. CSIRO Ecosystem Sciences; AustraliaFil: Mooney, Harold A.. Stanford University. Department of Biological Sciences; Estados UnidosFil: Brussaard, Lijbert. Wageningen University, Soil Quality Department; PaĂ­ses BajosFil: Cooper, David. Secretariat of the Convention on Biological Diversity; CanadĂĄFil: Wolfgang, Cramer. Institut MĂ©diterranĂ©en de BiodiversitĂ© et d’Ecologie marine et continentale; FranciaFil: Daszak, Peter. EcoHealth Alliance. Wildlife Trust; Estados UnidosFil: Diaz, Sandra Myrna. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; ArgentinaFil: Duraiappah, Anantha. International Human Dimensions Programme; AlemaniaFil: Elmqvist, Thomas. University of Stockholm. Department of Systems Ecology and Stockholm Resilience Center; SueciaFil: Faith, Daniel. The Australian Museum; AustraliaFil: Jackson, Louise. University of California; Estados UnidosFil: Krug, Cornelia. DIVERSITAS. MusĂ©um National d’Histoire Naturelle; FranciaFil: Leadley, Paul. UniversitĂ© Paris. Laboratoire Ecologie SystĂ©matique Evolution, Ecologie des Populations et CommunautĂ©s; FranciaFil: Le Prestre, Philippe. Laval University; CanadĂĄFil: Matsuda, Hiroyuki. Yokohama National University; JapĂłnFil: Palmer, Margaret. University of Maryland; Estados UnidosFil: Perrings, Charles. Arizona State University; Estados UnidosFil: Pulleman, Mirjam. Wageningen University; PaĂ­ses BajosFil: Reyers, Belinda. Natural Resources and Environment; SudĂĄfricaFil: Rosa, Eugene A.. Washington State University; Estados UnidosFil: Scholes, Robert J.. Natural Resources and Environment; SudĂĄfricaFil: Spehn, Eva. Universidad de Basilea; SuizaFil: Turner II, B. L.. Arizona State University; Estados UnidosFil: Yahara, Tetsukazu. Kyushu University; JapĂł

    Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis

    Get PDF
    Some of the most common infectious diseases are caused by bacteria that naturally colonise humans asymptomatically. Combating these opportunistic pathogens requires an understanding of the traits that differentiate infecting strains from harmless relatives. Staphylococcus epidermidis is carried asymptomatically on the skin and mucous membranes of virtually all humans but is a major cause of nosocomial infection associated with invasive procedures. Here we address the underlying evolutionary mechanisms of opportunistic pathogenicity by combining pangenome-wide association studies and laboratory microbiology to compare S. epidermidis from bloodstream and wound infections and asymptomatic carriage. We identify 61 genes containing infection-associated genetic elements (k-mers) that correlate with in vitro variation in known pathogenicity traits (biofilm formation, cell toxicity, interleukin-8 production, methicillin resistance). Horizontal gene transfer spreads these elements, allowing divergent clones to cause infection. Finally, Random Forest model prediction of disease status (carriage vs. infection) identifies pathogenicity elements in 415 S. epidermidis isolates with 80% accuracy, demonstrating the potential for identifying risk genotypes pre-operatively.Peer reviewe

    Identifying lineage effects when controlling for population structure improves power in bacterial association studies

    Get PDF
    Bacteria pose unique challenges for genome-wide association studies because of strong structuring into distinct strains and substantial linkage disequilibrium across the genome1,2. Although methods developed for human studies can correct for strain structure3,4, this risks considerable loss-of-power because genetic differences between strains often contribute substantial phenotypic variability5. Here, we propose a new method that captures lineage-level associations even when locus-specific associations cannot be fine-mapped. We demonstrate its ability to detect genes and genetic variants underlying resistance to 17 antimicrobials in 3,144 isolates from four taxonomically diverse clonal and recombining bacteria: Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Strong selection, recombination and penetrance confer high power to recover known antimicrobial resistance mechanisms and reveal a candidate association between the outer membrane porin nmpC and cefazolin resistance in E. coli. Hence, our method pinpoints locus-specific effects where possible and boosts power by detecting lineage-level differences when fine-mapping is intractable

    A re-examination of the life and work of A.F.G. Kerr and of his colleagues and friends

    Get PDF
    Arthur Francis George Kerr’s life is reviewed and related to a previously published account. Kerr’s collecting activity is analysed using an expanded version of the Thai Biogeography Group’s database of collections. 8,666 of the total 48,970 collections are Kerr’s and 3,178 are those of his colleagues and friends. Therefore, the total number of collections made by Kerr and his acquaintances is likely to be larger and more diverse than previously believed. Mapping of these data using GIS show that Kerr’s collecting activities focussed on particular regions of Thailand at particular times. Also large areas of the country remained unexplored by Kerr and his acquaintances: a pattern that, to some extent, persists to this day. The large, but dispersed, archive of Kerr’s photographs, maps, living collections and correspondence indicate that he was a skilled photographer (taking at least 3,000 images), cartographer (producing many hand-drawn maps) and exceptionally acute, accurate and detailed observer (filling numerous notebooks and leaving other records). It is clear that digitising these collections to form an on-line dedicated website is highly desirable to further progress on the flora of Thailand and surrounding countries and would form an unique record of the social history of early 20thC Thailand
    • 

    corecore