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Disease-associated genotypes of the commensal
skin bacterium Staphylococcus epidermidis
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Nattinee Kittiwan6, Phacharaporn Tadee7, Virginia Post8, Sarah Lamble9, Rory Bowden 9, James E. Bray 10,

Mario Morgenstern11, Keith A. Jolley 10, Martin C.J. Maiden 10, Edward J. Feil 1, Xavier Didelot12,

Maria Miragaia13, Herminia de Lencastre13,14, T. Fintan Moriarty 8, Holger Rohde15, Ruth Massey1,16,

Dietrich Mack17, Jukka Corander 3,18,19 & Samuel K. Sheppard1,5,10

Some of the most common infectious diseases are caused by bacteria that naturally colonise

humans asymptomatically. Combating these opportunistic pathogens requires an under-

standing of the traits that differentiate infecting strains from harmless relatives. Staphylo-

coccus epidermidis is carried asymptomatically on the skin and mucous membranes of virtually

all humans but is a major cause of nosocomial infection associated with invasive procedures.

Here we address the underlying evolutionary mechanisms of opportunistic pathogenicity by

combining pangenome-wide association studies and laboratory microbiology to compare S.

epidermidis from bloodstream and wound infections and asymptomatic carriage. We identify

61 genes containing infection-associated genetic elements (k-mers) that correlate with

in vitro variation in known pathogenicity traits (biofilm formation, cell toxicity, interleukin-8

production, methicillin resistance). Horizontal gene transfer spreads these elements, allowing

divergent clones to cause infection. Finally, Random Forest model prediction of disease status

(carriage vs. infection) identifies pathogenicity elements in 415 S. epidermidis isolates with

80% accuracy, demonstrating the potential for identifying risk genotypes pre-operatively.
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The most commonly cultured bacteria in clinical micro-
biology laboratories are the coagulase-negative staphylo-
cocci (CoNS), especially Staphylococcus epidermidis1,2.

Despite their importance as nosocomial pathogens3–7, CoNS are
not routinely surveyed even though they can represent > 40% of
cultured isolates from blood or cerebrospinal fluid samples4,5.
The reasons for this underreporting, compared with notorious
nosocomial pathogens such as Clostridium difficile8 and S. aur-
eus9,10, are linked to the ubiquity of CoNS as commensal colo-
nizers of human skin and mucus membranes. This leads to
difficulties in determining the clinical significance of isolates for
two reasons. First, isolates that have caused infection during
invasive procedures11 are difficult to distinguish from those that
have contaminated microbiological samples, unless they are iso-
lated multiple times12. Second, the incomplete understanding of
the determinants of pathogenicity in CoNS means they are often
described as opportunistic or accidental pathogens13 with little
attention given to the emergence and spread of virulent lineages.

There is mounting evidence that S. epidermidis isolated from
infections are a subset of those found on the skin surface14–18.
This implies that, rather than simple passive infection, there may
be certain lineages or specific virulence factors associated with the
emergence of pathogens from a background of harmless ances-
tors. For example, S. epidermidis pathogenesis is associated with
antibiotic resistance, attachment to host tissues and accumulation
in multi-layered biofilms on implanted medical devices3,19,20.
Consistent with this, methicillin resistance (mecA) and virulence
genes known to encode polysaccharide intercellular proteins
(PIA) are over-represented among strains from clinical
samples15,16,21.

With ever-more reliance upon invasive surgery in the post
antibiotic era, device-associated infections caused by S. epi-
dermidis will increase22. Therefore, there is a pressing need to
monitor these bacteria within genetically diverse commensal
populations3,23,24, and identify strains that may be pre-disposed
to pathogenicity. Here, we identify genetic and functional traits
associated with pathogenicity among 415 S. epidermidis isolate
genomes from asymptomatic carriage and human disease.
Applying a genome-wide association study (GWAS) approach
linked to clinically relevant phenotypes tested in vitro, we identify
whole genes and genetic elements associated with pathogenicity
(Fig. 1). This study improves the understanding of the evolution
of virulence and allows the calculation of a risk score for indi-
vidual isolate genotypes that, with further validation, could be a
basis for medical interventions.

Results
Core and accessory genome variation in S. epidermidis. The
pangenome of the 415 S. epidermidis isolate dataset comprised
12,079 unique genes. These included 1946 genes present in all
isolates which corresponded to 72% of the average genome size,
consistent with previous core genome estimates24. The rate of
accessory gene discovery did not plateau as the sampling
increased (Supplementary Figure 2), suggesting widespread
acquisition of genes through horizontal gene transfer (HGT).
While only 36% of all annotated genes from the reference S.
epidermidis strain ATCC12228 were of unknown function, this
number increased to 72% for the whole pangenome. All the
assembled genomes analysed in this study are available via Fig-
share (https://doi.org/10.6084/m9.figshare.7058543).

Pathogenicity emerges from asymptomatic lineages. The
population structure of 415 S. epidermidis isolates from infection
and asymptomatic carriage was reconstructed using a maximum-
likelihood phylogenetic tree from a concatenated gene-by-gene

alignment of 1946 genes shared by all isolates (Fig. 2b). Topology
was consistent with previous studies23,24 demonstrating that the
isolates in our collection represented known population structure
within the species. Infection isolates were present across the tree
reflecting emergence of disease clones from multiple genetic
backgrounds23 (Fig. 2b). A total of 355 isolates corresponded to
82 different sequence types (STs) (Table S1, Fig. 2a), with > 60%
of isolates (254/415) clustered in a single clonal complex (CC-2).
It remains possible that clonal lineages with enhanced pathogenic
potential may exist somewhere, or emerge in the future, but
among known genetic diversity in this species, isolates from all
major phylogenetic groups were represented in both the asymp-
tomatic and the infection isolate collections.

Pan-genome-wide association study of infection-associated
genes. Replicate GWAS experiments were performed on two
datasets of paired isolates with high sequence identity but
divergent phenotypes (asymptomatic carriage vs. infection)
(Supplementary Data 2, Supplementary Figure 6). This reduced
the impact of population structure and maximised the chance of
identifying elements associated with a phenotypic switch. A total
of 231,895 and 709,439 associated k-mers, respectively, mapped
to 914 and 1320 unique genes in the reference pan genome for an
overall total of 54,244 distinct alleles. There were a total of 636
genes containing infection-associated k-mers in both replicate
GWAS runs (Fig. 2c, Supplementary Data 3), corresponding to
250 core and 386 accessory genes. These genes had diverse pre-
dicted functions including those involved in toxicity, adhesion,
biofilm formation and metabolism, consistent with multifactorial
pathogenicity (Supplementary Data 4, Supplementary Figure 3).
Nearly half (17/40) of the top 40 genes containing significantly
associated k-mers were components of the staphylococcal cassette
chromosome mec (SCCmec) cassette (Supplementary Data 3). As
in GWAS studies of other organisms25,26, these candidate asso-
ciations have potential to improve understanding of known and
novel factors related to infection.

Correlating pathogenicity k-mers and in vitro phenotypes. The
prevalence of associated k-mers from primary GWAS (carriage
vs. infection) was correlated with quantitative scores from
laboratory phenotype assays, related to staphylococcal patho-
genicity (Fig. 1). While all hits from the primary GWAS have
potential for use as infection biomarkers, this correlation step
places putative genomic associations in the context of established
bench-top microbiology allowing functional inference and
improved understanding of clinically relevant
genotype–phenotype associations. Laboratory phenotypes inclu-
ded biofilm formation27, methicillin resistance28, cell toxicity29,30

and post-infection interleukin-8 (IL-8) levels in skin epithelial
cells and blood serum31,32 (See Supplementary Methods,
Fig. 3a–e, Supplementary Figure 4, Supplementary Data 6). We
observed no significant phenotype differences between asymp-
tomatic carriage and infection strains for IL-8 production in
keratinocytes (p= 0.2617, two-tailed t test, t= 1.141, df= 35)
(Fig. 3a), or biofilm formation (p= 0.0856, two-tailed unpaired t
test, t= 1.741, df= 78) (Fig. 3b). However, there was a general
trend towards increased methicillin resistance (p < 0.0001, two-
tailed Fisher’s exact test) and reduced toxicity (p= 0.0188, two-
tailed unpaired t test, t= 2.435, df= 46) among infection isolates.
This is consistent with previous studies of methicillin resistance
among clinical isolates15 and lower cell toxicity among isolates
from invasive disease33, highlighting a role for the reduction of
cytolytic activity to be a favourable trait for relative fitness in
human serum34. Genetic variation in agrC, associated with a
single k-mer hit (Supplementary Data 1), may confer attenuated
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function of AgrC35, associated with persistent S. aureus bacter-
aemia36. We observed a significantly higher production of IL-8 in
blood in infection compared with carriage isolates (p= 0.0185,
two-tailed unpaired t test, t= 2.405, df= 78) (Fig. 3d). The pre-
valence of all k-mers from the primary phenotype was correlated
(Fisher’s exact test) with isolate phenotype variation in the
laboratory assay (Fig. 1). A total of 23,561 (out of 210296, Sup-
plementary Data 3) pathogenicity-associated k-mers correlated
with high in vitro phenotype scores, corresponding to 61 genes:
17 involved in biofilm formation; 18 in cell toxicity; 8 in IL-8
response to infection in blood; 18 in methicillin resistance
(Supplementary Data 1, Fig. 3f, Supplementary Notes). The fre-
quency of these 23,561 correlated k-mers was quantified in a
second dataset of 263 S. epidermidis genomes (Supplementary
Data 2), comprising 65 carriage and 198 infection isolates. The
presence of a given infection-associated k-mer was strongly pre-
dictive of the presence of other k-mers associated with that sec-
ondary phenotype (Supplementary Figure 5). A total of 3% of

carriage isolates contained infection-associated elements for all
four laboratory phenotypes combined, compared with 58% for
infection isolates.

Consistency index of pathogenicity-associated genes. There was
a subtle increase in the average allelic variation among genes
associated with infection (Fig. 4a). This might be expected
because of the accumulation of deleterious mutations associated
with bacterial range expansion37, but the difference was not sta-
tistically significant. The average number of unique alleles per
isolate was 0.2442 ± 0.1494 for the 61 genes containing phenotype
correlated infection-associated elements, compared with 0.1415 ±
0.065 for 1946 core genes. The different distributions of these
values (Fig. 4b) provided an initial indication of elevated
recombination among pathogenicity-associated genes. Consistent
with this, the mean consistency index (CI) was significantly lower
(MannWhitney test; U= 15.50, p= 0.002) among genes
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Fig. 1 Phenotype correlated GWAS and risk prediction. Genome-wide association studies (GWAS) can identify numerous SNPs associated with complex
traits but these can be difficult to interpret. For example, pathogenicity is multifactorial, potentially involving genes underlying phenotypes that promote
transmission, virulence, immune evasion, antimicrobial resistance etc. In some bacteria, specific phenotypes known to contribute to pathogenicity can be
measured in laboratory assays, providing a basis for quantitative analysis of disease dynamics. We developed a method in which k-mers from a primary
GWAS analysis (asymptomatic carriage vs. infection isolates) were correlated with data from four relevant phenotype assays: biofilm formation (blue); cell
toxicity (yellow); methicillin resistance (red); IL-8 production by host cells (purple). Using Fisher’s exact test, k-mers from primary GWAS were correlated
with laboratory phenotype using a 2 × 2 table in which rows indicated presence/absence of the k-mer and columns indicated upper and lower percentile in
the laboratory phenotype assay. The resulting P-values, derived for each k-mer, help to link k-mers in the primary GWAS with quantifiable pathogenicity-
related phenotypes. Patterns of k-mer presence and absence can be used as classifiers in a random forest model to identify the best predictors of infection
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containing infection-associated elements (0.3064 ± 0.21) com-
pared with other core genes (0.4590 ± 0.1577), and the respective
distributions of all CI values clearly differed (Fig. 4b). This pro-
vides evidence that the clonal mode of descent is disrupted in
infection-associated genes consistent with elevated HGT.

Infection risk genotypes. Quantitative determination of markers
of infection risk was carried out using a Random Forest (RF)
approach in three ways where the estimated risk score was
defined as: (i) the probability of an isolate coming from infection
given a certain k-mer profile; (ii) the probability of an isolate
coming from infection given a certain phenotype correlated k-
mer profile; (iii) the probability of an isolate coming from
infection based upon the presence of the four k-mers that were
identified as most important for each of the four clinically rele-
vant lab phenotypes (Fig. 1). In the initial RF analyses (i) and (ii),
all 1900 and 293 (respectively) unique k-mer presence and
absence patterns were included as predictors in the model. The
models reached out-of-sample classification accuracy of 85.4%
and 80.5%, respectively, for predicting disease status (infection vs.
carriage) based on the k-mer profile. K-mers associated with
SCCmec accounted for a high proportion of the most important
predictors, with five in the top ten (Fig. 3g). To investigate the
amount of redundancy among the k-mer predictors, they were
sorted according to their estimated importance and sub-models

including only the l most important phenotype correlated pre-
dictors (l= 1,…,293) were built and evaluated. The importance of
the 20 highest ranked predictors is shown in Fig. 3h alongside the
classification accuracy of the corresponding sub-models. There
was considerable redundancy among the predictors. The classi-
fication accuracy of most sub-models was around 80%, the
highest ranked MEC-associated predictor reached a classification
accuracy of around 75% on its own, potentially offering a very
simple target for clinical investigation of S. epidermidis risk.

Given the results in studies (i) and (ii), information provided
by the k-mers can be captured almost fully using a much simpler
model. Using the ranking provided by the initial studies, the final
model (iii) was built using only the most important predictor
from each lab phenotype category. The selected predictors were
found on place 1, 2, 3 and 11 in the importance ranking for
phenotype-correlated predictors (Fig. 3h). The significantly
simpler model with only four predictors reached an out-of-bag
classification accuracy of 79.8%, which is close to that in the
complete model. The importance of the selected predictors in the
new model is shown in Fig. 3I. The high numbers of SCCmec-
associated elements in the primary GWAS (Supplementary
Data 3) and among the 61 genes containing phenotypically
correlated hits (including ccrB, mecR1, mecA, maoC, arc, arcB-2
and other genes encoding hypothetical proteins, Supplementary
Data 1) indicates the importance of relative abundance of
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SCCmec in infection strains, compared with those from the
commensal environment. Consistent with this, the MEC-
associated predictor, in mecA, was clearly the most important.
Figure 3j illustrates the overall effect of the different k-mers on
the estimated risk score of the model. A point above the diagonal

implies that the risk score for a specific k-mer profile is higher
when the colour-indicated k-mer is present compared with
absent. Overall, the presence of the MEC-associated k-mer
significantly increases the risk score, while the presence of the
other k-mers has a more moderate opposite effect. Finally, to
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illustrate the trade-off between true and false positives, the ROC
curve based on the out-of-bag risk scores of the classifier is shown
in Fig. 3k.

The greatest challenge for risk prediction based upon infection-
associated k-mers is that samples from asymptomatic carriage
may include strains that have the potential to cause infection
later, after our samples were taken. This depends on the
opportunity to infect, specifically the healthcare related proce-
dures a person will be subjected to. Thus, while it is relatively
straight forward to obtain isolates from confirmed infection, it is
nearly impossible to get a representative sample of carriage strains
that does not contain isolates with the potential to cause disease.

In light of this, it may seem surprising that a single k-mer
classifier can be so powerful. This has clear implications for the
development of infection biomarkers in a clinical setting. Finally,
we carried out an additional validation RF analysis using the best
RF classifier k-mer (in mecA), on a small independent dataset of
S. epidermidis isolate genomes comprising 18 commensal carriage
and 18 randomly selected infection isolates (from 312) available
on the NCBI database (Supplementary Data 7). The classification
accuracy was 67%, which is comparable with that in the larger
primary dataset (75%).

Discussion
Many infections are caused by pathogens that arise from a
background bacterial population that, under normal circum-
stances, co-exists peacefully with their hosts38. For bacteria,
infection requires the opportunity for transmission and the ability
to proliferate in the infection niche. In nosocomial staphylococcal
disease, transmission is primarily a passive process as commensal
epidermal organisms infect under conditions of host perturba-
tion, for example, through contamination of subcutaneous tissue
during invasive procedures. However, disease also depends on
pathogen survival and colonization of the new subcutaneous
niche, where environmental conditions are different.

There is compartmentalization of the environments from
which S. epidermidis was sampled in this study into strains from
commensal carriage (skin, nasal pharynx) and infection. It is
therefore possible to consider different possible models for S.
epidermidis infection from the primary site of adaptation (com-
mensal niche) when there is epidermal damage (Fig. 5). First, the
proliferation of specific pathogenic clones that are a sub-
population of the commensal skin microbiota. Second, true
opportunistic pathogenicity, in which all strains are equally able
to cause infection. Third, a divided genome model39–41, in which
strains from multiple genetic backgrounds proliferate because
they share genes and associated phenotypes that promote colo-
nization of the subcutaneous niche.

In a simple infection model, disease may result from the bac-
teria adapting to one or few dominant ecological changes, such as
resistance to antibiotics that may be abundant in the tissue of
hospital patients. S. aureus provides a good example, as pro-
genitor strains have acquired resistance through rare HGT events
and the descendants proliferate because of the advantage this
provides in the invasive niche. In cases such as this, it may be
possible to identify the spread of successful pathogen clones
(Fig. 5a) by comparing them with commensal isolates on phy-
logenetic reconstructions, where they appear as clusters of
genetically related disease-causing strains42.

It is clear from the S. epidermidis phylogeny (Fig. 2b) that
disease isolates do not represent a few successful pathogen clones,

Fig. 3 Correlation of pathogenicity-associated genotypes with in vitro pathogenicity-related phenotypes. a–e Distribution of scores for five in vitro
phenotypes between asymptomatic carriage (red, n= 44) and infection S. epidermidis isolates (blue, n= 36): a interleukin-8 (IL-8) quantification in HaCaT
keratinocytes and d in whole human blood serum, b biofilm formation, c cytotoxicity using a vesicle assay (comparing 17 asymptomatic with 31 infection
isolates), and e methicillin resistance (defined as growth at a concentration of > 0.25 mg/L). The mean and s.d. error bars are shown for A-D with P-value
determined using two tailed t test, n.s. indicates not significant. Two-tailed Fishers exact test was used to determine significant difference (P-value) in
methicillin resistance (e). f Manhattan plot of Fisher’s exact test P-values correlating the prevalence of each GWAS-associated k-mer with high and low
percentiles of four in vitro phenotype scores performed on the same S. epidermidis isolates used for GWAS. The red dotted line indicates the lower
threshold for statistical significance used in the GWAS. The blue dotted line indicates a cut-off for top correlation values. Top values mapped to 61 genes.
g–k Identification of predictive genotypes for pathogenicity in S. epidermidis using random forest (RF) models. g Importance of the top 1000 (of 1900) k-
mer predictors from the primary GWAS; h predictor importance (left y-axis) among the top 20 phenotype correlated predictors. The red dotted line shows
the classification accuracy (right y-axis) of the sub-models in which only the corresponding top predictors are included. i Predictor importance of the four
laboratory phenotype-specific k-mers included in the final model. j Change in risk score for a specific k-mer profile when the colour-indicated k-mer is
present (y-axis) compared to absent (x-axis). A point above the diagonal implies that the risk score is increased when the k-mer is present. k ROC curve
showing the overall performance of the classifier
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but are distributed across the phylogeny with commensal isolates
of multiple genetic backgrounds. This could imply that all S.
epidermidis lineages are equally able to cause infection, given the
opportunity for transmission (Fig. 5b). If this were the case, then
disease determinants would not be expected to segregate by iso-
late source. However, the GWAS identified numerous infection-
associated k-mers, many of which mapped to genes known to be
associated with pathogenicity16. This is consistent with enrich-
ment for sequence encoding traits such as colonisation, survival
and virulence factors among isolates from infection.

To investigate putative functional differences between invasive
and commensal strains, it is necessary to link infection-associated
SNPs with phenotypic variation. This can be challenging when
there are high numbers of infection-associated k-mers, reflecting
the multifactorial nature of the pathogenicity. Some genetic var-
iation can relate to more than one type of infection43, but by
correlating k-mer presence with laboratory phenotypes (Fig. 1)
known to be relevant to staphylococcal virulence28–30,32, we
identified sequence variation in S. epidermidis genes associated

with biofilm formation, cell toxicity, methicillin resistance and
elicitation of inflammation in blood (IL-8). The enrichment of
these putative virulence determinants among isolates from
infection suggests that pathogenic strains are a subset of the
commensal population that contain genes and alleles that may
promote colonization of the site of infection (Fig. 5c).

This is difficult to explain from a theoretical point of view as
the commensal environment is the primary niche and isolates
encounter the secondary (invasion) niche relatively infrequently.
Therefore, there is little opportunity for an evolutionary trade-off
between genes that favour growth in one niche versus the other38,
and the fitness of pioneer populations may be expected to decline
as they expand their range because of increased genetic drift and
reduced efficiency of selection in removing deleterious muta-
tions37. Furthermore, while chronic infection could represent a
reservoir for re-colonization of the skin, in many cases the sec-
ondary niche will be a dead end, especially as the host patient may
be cured or die. This means that adaptations to the secondary
niche would be purged from the population because of their fit-
ness cost. It is possible that virulence-associated variation confers
a different advantage in the primary niche. This type of pre-
adaptation has been observed in Streptococcus pneumoniae where
selection for maintenance of capsular polysaccharides is driven by
competition with other commensal organisms in the nasal
pharynx but also confers increased risk of causing invasive disease
in humans44,45.

While pre-adaptation may be important, HGT is known to be a
major force in staphylococcal evolution, including S. epidermi-
dis24, with the acquisition of genes through recombination
potentially conferring adaptations associated with pathogeni-
city24,46. This has potential benefits in heterogeneous environ-
ments47, extending the number of niches that S. epidermidis can
colonize successfully, through the acquisition of virulence factors
that promote proliferation on invasion. Initial evidence of HGT
can be seen as the putative virulence determinants identified with
GWAS, are not distributed consistent with the S. epidermidis
clonal frame (Fig. 2b) and it is unlikely that convergent genotypes
evolved multiple times in different genetic backgrounds. Fur-
thermore, detailed analysis of individual trees revealed that the 61
genes containing putative virulence determinants have a sig-
nificantly lower mean consistency index (Fig. 4b), compared with
core genes, suggesting more homoplasy has occurred.

While clonal reproduction might be expected to dominate in
the primary commensal niche the importance of HGT may be
elevated in heterogeneous environments allowing adaptive
genetic elements to spread horizontally through the population.
This is consistent with a divided genome39 or gene-specific
selective sweep model40,41 of bacterial evolution where genes,
rather than strains, inhabit niches. When there is migration, the
rate and impact of HGT would be increased39 as genes that are
positively selected in the infection niche will sweep through the
population. Recombination, therefore, increases the speed and
effectiveness of adaptation to the invasive niche by ameliorating
competition between selected clones carrying competing bene-
ficial mutations (clonal interference48) by moving multiple
selected sites into a common background (Fig. 5c). Therefore, in a
genetically diverse community of commensal S. epidermidis, HGT
may promote: (i) the emergence of lineages (at the boundary
between niches) that could colonize the invasive niche effectively
and (ii) ongoing adaptation as positively selected genes that
confer an advantage in the invasive niche, sweep through the
invasive population.

Finally, we turn to the control of S. epidermidis infection in a
public health setting. Based upon the findings of this study, it is
clear that targeting individual clones based upon molecular typing
methods would be partially ineffective, as the putative
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Fig. 5 Contrasting models of S. epidermidis infection and associated
variation in conceptual genomic data. Each panel summarises scenarios for
subcutaneous colonization from the primary commensal skin environment
to the blood (left), and the impact on an S. epidermidis population of two
clones (blue and red circles) and their genomes (internal circles) which
may be enriched for putative pathogenicity-associated genes (red) or not
(blue). Genealogical reconstructions of isolates sampled from infected
blood are shown in the middle column. The prevalence of disease
determinants in the genome of isolates from skin and blood are shown on
the right. a Proliferation of pathogenic clones: clones with genomes
enriched for pathogenicity determinants proliferate in the blood and other
strains do not, observed as a discrete pathogen lineage on the tree. b True
opportunistic pathogenicity: multiple genetically divergent clones
proliferate in the blood and disease determinants are equally distributed
among the genomes of isolates from the skin and the blood (or would be
undetectable). c Divided genomes: horizontal gene transfer (R) spreads
pathogenicity determinants into multiple genomic backgrounds allowing
divergent clones to colonize the blood successfully
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determinants of disease recombine and are found in multiple
genetic backgrounds. However, predicting the likelihood that a
given isolate from asymptomatic carriage could lead to compli-
cations after surgery would be of benefit, allowing pre-operative
interventions to reduce the risk of infection. Simple empirical
comparison of the frequency of putative virulence determinants
allows the identification of carriage strains that may pose a risk
(Supplementary Figure 5). This has limitations as there are
numerous colonization and virulence factors that may be asso-
ciated with different types of infection, for example bacteraemia
versus indwelling device infection, and not all virulence factors
will necessarily be present among S. epidermidis isolates causing
infection49.

To provide a more accurate prediction of risk, we used a
Random Forest machine learning approach to quantify the power
of different k-mer combinations to predict if an isolate came from
infection. Based upon several analyses, there was considerable
redundancy among the predictors, with little benefit in analysing
all disease-associated k-mer combinations. Using a simple model
with only the most important k-mer predictors from each
laboratory phenotype category (Fig. 3h) gave a classification
accuracy of 80%. Interestingly, a k-mer mapping to the mecA
gene, that encodes methicillin resistance on the SCCmec element,
was the best predictor for S. epidermidis isolates from infection,
giving a classification accuracy of 75% on it’s own. It is well
known that Methicillin-resistant S. aureus (MRSA), harbouring
SCCmec, are a prominent cause of infection in healthcare set-
tings9. Furthermore, the presence of the mecA locus is also cor-
related with resistance to fluoroquinolones50,51, associated with
point mutations in grlA, grlB, gyrA and gyrB genes and gyrB was
also among the 61 genes containing k-mers correlated with S.
epidermidis methicillin resistance in vitro (Supplementary
Data 1). These parallels may suggest that methicillin resistance
has a similar role in the epidemic potential of S. aureus and S.
epidermidis. However, the epidemic spread of MRSA associated
with a discrete number of highly successful MRSA clones9 con-
trasts with the emergence of multiple disease-causing S. epi-
dermidis clones distributed across the phylogeny (Fig. 2b). Under
these conditions, the risk markers have considerable potential for
identifying pathogenic strains and, as larger numbers of isolate
genomes increase the predictive power, these models could be
used for evaluating pre-operative treatment options in a public
health setting after further validation.

Opportunistic pathogens, such as S. pneumoniae, Neisseria
meningitidis and S. aureus, remain a major public health threat.
These organisms do not conform to a simple theoretical closed
system model of obligate pathogen specialists, but clues to the
factors that promote the emergence of disease-causing strains can
be locked in their genome. In the extreme case of S. epidermidis,
practical difficulties in defining disease-causing strains have led to
its underrepresentation among nosocomial pathogen surveys.
However, S. epidermidis strains from the commensal environ-
ment and disease are not equivalent. Rather, the disease-causing
S. epidermidis represent a pathogenic sub-population that have
acquired genetic elements and related phenotypes that promote
infection. Defining these organisms as pathogens is the first step
towards effective control of infection.

Methods
Bacterial sampling. Genomes from 415 S. epidermidis isolates, from multiple
sampling efforts, were analysed (Supplementary Data 2). These included: 240
isolates sampled as part of this study; 35 genomes available from public repositories
(February 2013); and 140 recently sequenced S. epidermidis genomes from geo-
graphically and clinically diverse isolates characterised in previous studies21,23,24,52.
Asymptomatic carriage isolates were sampled from healthy volunteers in Swansea
University (UK) in 2012, using culture swabs containing Ames media, which were
then cultured on Columbia Blood Agar plates. Volunteers gave informed consent,

as assessed by the local Human Tissue Act committee (Wales REC 6) at the
Swansea University Medical School (ref: #13/WA/0190). To ensure that isolates
from infection were not laboratory contaminants, 113 strains from prosthetic joint
infections isolated from independent pure cultures of pre-operative joint aspirates,
and intraoperative tissue specimens were obtained under strict aseptic conditions16.
Additionally, isolates were sampled from intraoperative surgical specimens of
fracture fixations (n= 60), osteomyelitis (n= 5), bacteraemia (n= 2) and colo-
nised catheters linked to an infection event (n= 45). Among these, 85 isolates from
infection (identifier 1043–1136) were collected as part of a prospective study
performed between November 2011 and September 2013 at the BGU Murnau,
Germany, a level-one trauma centre with a high volume, 70-bed unit for septic and
reconstructive surgery52,53. The total dataset in this study comprised 141 isolates
from healthy carriage obtained in hospitals and the community from 11 countries
in three continents (57/141 from the UK) and 274 isolates from clinical infections
(Supplementary Data 2).

Genomic DNA extraction, sequencing and archiving. DNA was extracted using
the QIAamp DNA Mini Kit (QIAGEN, Crawley, UK), using manufacturer’s
instructions, with 1.5 μg/μl lysostaphin (Ambi Products LLC, NY) to facilitate cell
lysis. DNA was quantified using a Nanodrop spectrophotometer, as well as the
Quant-iT DNA Assay Kit (Life Technologies, Paisley, UK). High-throughput
genome sequencing was performed using a HiSeq 2500 machine (Illumina, San
Diego, CA), and the 100-bp short-read paired-end data were assembled using the
de novo assembly algorithm, Velvet54. The VelvetOptimiser script (version 2.2.4)
was run for all odd k-mer values from 21 to 99. The minimum output contig was
size set to 200 bp with the scaffolding option disabled. Other program settings were
as default, and assembly quality metrics were recorded (Supplementary Data 5). All
genome sequences were archived on a web-accessible BIGSdb database55, and
genome sequences generated in this study are available on NCBI BioProject
PRJNA433155.

Core and accessory genome characterization. A S. epidermidis coding sequence
pangenome gene list was constructed for isolates in this study56 by automated
annotation of all genomes from the dataset using the RAST/SEED system57 and the
WebMGA COG annotation server58 (see Supplementary Methods). After removal
of alleles of the same gene with a BLAST threshold of 70% sequence similarity56,
there were 12,079 unique genes present in at least one of the 415 genomes. Con-
sistent with previous studies, and the whole-genome MLST principle55,59–61, the
gene complement and allelic variation of each isolate was determined by com-
parison with the pangenome with gene presence recorded as a BLAST match of >
70% sequence identity over ≥ 50% of sequence length. For each pair of isolates, the
number of shared genes and alleles (identical sequences at a given locus) was
calculated. Core genes were present in 100% of the genomes and accessory genes
were present in at least one isolate.

Phylogenetic analyses. Core gene sequences were individually aligned, using
MUSCLE62, and concatenated, consistent with the gene-by-gene approach55,60,61;
and a tree was reconstructed using an approximation of maximum-likelihood
phylogenetics in FastTree263. This tree was used as an input for ClonalFrameML64

to produce core genome phylogenies with branch lengths corrected for
recombination.

In vitro phenotype assays. To measure variation in clinically relevant phenotypes
for 80 isolates, established in vitro laboratory assays quantified: (i) biofilm for-
mation; (ii) toxicity using a vesicle lysis test (VLT) (for 48 isolates); (iii) methicillin
resistance; (iv) production of interleukin-8 (IL-8) by human keratinocytes in
presence of S. epidermidis; (v) IL-8 production following inoculation of human
blood with S. epidermidis. Briefly, biofilm formation was assessed using crystal
violet staining of bacteria attached to the polystyrene surface of a 96-well microtitre
plate65, in three biological replicates for each bacterial strain, grown for 24 h at 37 °
C in tryptone soy broth (TSB) and washed in PBS (see Supplementary Methods).
Methicillin resistance was quantified using standard European Committee on
Antimicrobial Susceptibility Testing (EUCAST)66 methods for susceptibility test-
ing67. Bacteria were cultured in the presence of Etest strips (bioMerieux) com-
prising a pre-determined continuous gradient of methicillin for ~16 h. The
minimum inhibitory concentration (MIC) was recorded based upon the zone of
inhibition. Cell toxicity was assessed using a vesicle lysis test (VLT)29 designed to
be specific to small amphipathic peptides, including staphylococcal delta and
phenol soluble modulin (PSM) toxins (see Supplementary Methods). Briefly, a
solution of lipid vesicles containing encapsulated self-quenched fluorescent dye, 5
(6)-carboxyfluorescein (CF), were designed to be responsive to specific Staphylo-
coccus toxins so that when the vesicles were disrupted by bacterial supernatants
containing secreted cytolytic factors, an increase of fluorescence was measured (see
Supplementary Methods)29. IL-8 was chosen as an immune response marker from
a suite of cytokines as it is known to be important in mediating the pro-
inflammatory response in staphylococcal infection, culminating in neutrophil
recruitment in pathogen defence. Overexpression of IL-8, along with TNFα, IL-6
and IL-1B, has been postulated as a biomarker for staphylococcal sepsis68. IL-8
production by a HaCaT keratinocytes (ATCC)69 cell line from human skin
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epithelial, and by human whole blood was measured by enzyme-linked immuno-
sorbent assay (ELISA) after challenge by 80 strains (in three biological replicates) of
S. epidermidis representing the genomic diversity of the species23. These phenotype
assays were chosen as they have been previously related to pathogenicity. However,
it should be noted that S. epidermidis is principally adapted to the commensal niche
(17) with no clear virulence-associated phenotype that completely distinguishes
invasive from commensal strains70,71. The incomplete understanding of patho-
genicity means that it is possible that a given phenotype may promote opposite
outcomes, for example, infectivity (and acute infection) on one hand and adapt-
ability (chronic infection) on the other. Full details of in vitro phenotype assays are
included in Supplementary Methods.

Pangenome-wide association study. The alignment-free GWAS method involved
fragmentation of assembled genomes into consecutive, overlapping 30 bp k-mers
(or “30-mers”, termed “k-mers” throughout this study), and sorting by isolate
source (asymptomatic carriage vs. infection), capturing genetic variation in the core
and accessory genome59,72. The prevalence of each k-mer in the two phenotypic
groups was quantified in a 2 × 2 contingency table (with four cells a, b, c, d) in
which rows indicated presence/absence of the k-mer and columns indicated phe-
notype. Because bacteria reproduce clonally, sequences present in related strains
will not only reflect adaptive elements associated with the phenotype of interest,
but also sequence that was inherited from the common ancestor, potentially
confounding GWAS analysis25,72–74. To account for this, two steps were taken.
First, duplicate input datasets were defined, each containing 38 unique isolate pairs
(one from asymptomatic carriage, one from infection) that are closely related on a
ClonalFrameML phylogeny (Supplementary Figure S6). These two datasets were
technical replicates for independent GWAS analyses. Second, the significance of the
association score (P-value) for each k-mer, a+ d – (b+ c), was determined by
comparing the observed association score with a Monte Carlo simulated null
distribution where k-mers where randomly gained and lost along the branches of
the clonal phylogeny, independent of the phenotype of interest (asymptomatic
carriage vs. infection). Algorithmic comparison of the simulated and observed k-
mer score distributions allows correction of the P-values to account for the phy-
logenetic relationships72. Details of the pipeline and scripts are available in Sup-
plementary information (see Supplementary Figure 1) and on https://github.com/
sheppardlab/pGWAS. To allow functional inference, the significantly associated k-
mers (P < 0.001) were mapped to the coding sequence pangenome described
above56, and allele at each locus were identified. The reference pangenome
approach is detailed in the Supplementary information.

Covariance of GWAS hits with secondary in vitro phenotypes. All k-mers
significantly associated with the primary phenotype (asymptomatic carriage and
infection) were correlated with data from in vitro phenotypes for that isolate.
Results from quantitative biofilm formation, methicillin resistance, cell toxicity and
host cell immune response phenotype assays were divided into three categories
with a third of ranked values in each (upper 100th–66th, middle 66th–33rd, lower
33rd–1st). For every k-mer associated with the primary phenotype (n= 310,850), a
2 × 2 contingency table summarised k-mer presence/absence in isolates within the
upper and lower percentile for the secondary phenotype (Fig. 1). The genome
position of k-mers significantly associated with the secondary phenotype (Fisher’s
exact test, P-value < 0.005) were visualised using Circos75.

Horizontal gene transfer among infection-associated genes. Population genetic
analyses were undertaken to compare molecular variation among 61 genes that
contained infection-associated elements, correlated with a secondary infection
phenotype and those that did not (n= 1946 genes), in asymptomatic carriage and
infection isolates. For both groups, the number of alleles at each locus (determined
using a whole-genome MLST approach61 and consistency index (CI)) were cal-
culated. The consistency of a phylogenetic tree to patterns of variation in sequence
alignments was determined for each gene of interest, and constituted an inference
of the minimum amount of homoplasy in these genes, as implied by the tree76. The
CI function from the R Phangorn package77 was used to calculate consistency
indices for every single-gene alignment of the 61 genes of interest to a phylogeny
constructed from a concatenated gene-by-gene alignment of 1946 genes shared by
all 152 isolates used in the GWAS. The average CI of these shared genes was
compared to that of the 61 genes containing pathogenicity-associated elements and
correlated with secondary in vitro phenotypes.

Risk calculation. Pathogenicity is a complex multifactorial property. By training a
classifier using the output of the GWAS analysis, we were able to go from observa-
tions of sequence variation among infection and carriage isolates to predicting phe-
notype and allowing risk calculation for different genotypes. To capture the non-
linear and potentially complex association between sequence variation and phenotype,
a Random Forest (RF) classifier was used78. To limit the complexity of the model, a
feature selection procedure was applied. The data contained 415 isolates (141
asymptomatic, 274 infection). The set of candidate predictors consisted of 310,850
presence/absence patterns of disease-associated k-mers identified in the primary
GWAS analysis and 23,561 presence/absence patterns of disease-associated and lab
phenotype-correlated k-mers (Fig. 1). After filtering out the non-unique k-mer

patterns, this corresponded to 1900 and 293 predictors, respectively. In separate RF
runs, the classifiers were trained using all 1900 or 293 predictors. The importance of
the predictors was estimated using the built-in criterion of the RF model. The pre-
dictors were then sorted from the most to the least important. To reduce the model
complexity and thereby the risk of overfitting, we applied a two-step feature selection
approach. In the first step, we made use of prior biological knowledge and focused on
k-mers that were correlated with known pathogenicity-associated laboratory pheno-
types. In the second step, we used a data-driven procedure to pick out a small subset
of the most informative predictors discovered during the first step. To evaluate
the performance of models including only a small subset of the predictors, the clas-
sification accuracy of RF models including only the l highest ranked predictors (l= 1,
…n) was estimated using two-fold cross-validation (100 iterations).

The accuracy of the classifier was estimated by out-of-bag prediction, which
gives an unbiased estimate of the out-of-sample accuracy without requiring a
separate test set. The procedure exploits the subsampling step used during training
where the out-of-bag prediction of isolate A is the mean prediction averaged over
all trees that did not have isolate A included in their bootstrap training sample.

Ethics. Volunteers who donated blood for this study gave their consent as part of a
research project that has been assessed by the local Human Tissue Act committee
(Wales REC 6) at the Swansea University Medical School (ref: #13/WA/0190).

Data availability
All scripts and example input and output files are available on: https://github.com/
sheppardlab/pGWAS and Figshare. Short-read sequence data for all 241 isolates
sequenced in this study are deposited in the SRA and can be found associated with
BioProject PRNJA433155. Assembled genomes are also available on figshare. NCBI
genome accession numbers for isolates in the validation dataset are included in
Supplementary Data 7.
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