291 research outputs found

    Deformability and collision-induced reorientation enhance cell topotaxis in dense microenvironments

    Full text link
    In vivo, cells navigate through complex environments filled with obstacles. Recently, the term 'topotaxis' has been introduced for navigation along topographic cues such as obstacle density gradients. Experimental and mathematical efforts have analyzed topotaxis of single cells in pillared grids with pillar density gradients. A previous model based on active Brownian particles has shown that ABPs perform topotaxis, i.e., drift towards lower pillar densities, due to decreased effective persistence lengths at high pillars densities. The ABP model predicted topotactic drifts of up to 1% of the instantaneous speed, whereas drifts of up to 5% have been observed experimentally. We hypothesized that the discrepancy between the ABP and the experimental observations could be in 1) cell deformability, and 2) more complex cell-pillar interactions. Here, we introduce a more detailed model of topotaxis, based on the Cellular Potts model. To model persistent cells we use the Act model, which mimicks actin-polymerization driven motility, and a hybrid CPM-ABP model. Model parameters were fitted to simulate the experimentally found motion of D. discoideum on a flat surface. For starved D. discoideum, both CPM variants predict topotactic drifts closer to the experimental results than the previous ABP model, due to a larger decrease in persistence length. Furthermore, the Act model outperformed the hybrid model in terms of topotactic efficiency, as it shows a larger reduction in effective persistence time in dense pillar grids. Also pillar adhesion can slow down cells and decrease topotaxis. For slow and less persistent vegetative D. discoideum cells, both CPMs predicted a similar small topotactic drift. We conclude that deformable cell volume results in higher topotactic drift compared to ABPs, and that feedback of cell-pillar collisions on cell persistence increases drift only in highly persistent cells

    Output feedback tracking of ships

    Get PDF
    Abstract-In this brief, we consider output feedback tracking of ships with position and orientation measurements only. Ship dynamics are highly nonlinear, and for tracking control, as opposed to dynamic positioning, these nonlinearities have to be taken into account in the control design. We propose an observer-controller scheme which takes into account the complete ship dynamics, including Coriolis and centripetal forces and nonlinear damping, and results in a semi-globally uniformly stable closed-loop system. Furthermore, a gain tuning procedure for the observer-controller scheme is developed. Experimental results are presented where the observer-controller scheme is implemented onboard a Froude scaled 1:70 model supply ship. The experimentally obtained results are compared with simulation results under ideal conditions and both support the theoretical results on semi-global exponential stability of the closed-loop system

    FXYD3: A Promising Biomarker for Urothelial Carcinoma

    Get PDF
    Objective Urothelial carcinoma (UC) of the kidney is a relatively rare but aggressive form of kidney cancer. Differential diagnosis of renal UC from renal cell carcinoma (RCC) can be difficult, but is critical for correct patient management. We aimed to use global gene expression profiling to identify genes specifically expressed in urothelial carcinoma (UC) of the kidney, with purpose of finding new biomarkers for differential diagnosis of UC of both upper and lower tract from normal tissues. Materials and Methods Microarray gene expression profiling was performed on a variety of human kidney tumor samples, including clear cell, papillary, chromophobe, oncocytoma, renal UC and normal kidney controls. Differentially expressed mRNAs in various kidney tumor subtypes were thus identified. Protein expression in human UC tumor samples from both upper and lower urinary tract was evaluated by immunohistochemistry. Results FXYD3 (MAT-8) mRNA was specifically expressed in UC of the kidney and not in normal kidney tissue or in any RCC tumor subtypes. FXYD3 mRNA levels displayed equal or better prediction rate for the detection of renal UC than the mRNA levels of selected known UC markers as p63, vimentin, S100P, KRT20 and KRT7. Finally, immunohistochemical staining of clinical UC samples showed that FXYD3 protein is overexpressed in majority of UC of the upper genitourinary tract (encompassing the kidney, ~90%) and in majority of high grade bladder UC (~84%, it's < 40% in low grade tumors, P < 0.001) compared to normal kidney and bladder tissues. Conclusion FXYD3 may be a promising novel biomarker for the differential diagnosis of renal UC and a promising prognosis marker of UC from bladder. Because it was identified genome-widely, FXYD3 may have important biological ramifications for the genetic study of UC

    A two-armed probe for in-cell DEER measurements on proteins

    Get PDF
    The application of double electron-electron resonance (DEER) with site-directed spin labeling (SDSL) to measure distances in proteins and protein complexes in living cells puts rigorous restraints on the spin-label. The linkage and paramagnetic centers need to resist the reducing conditions of the cell. Rigid attachment of the probe to the protein improves precision of the measured distances. Here, three two-armed GdIII complexes, GdIII-CLaNP13a/b/c were synthesized. Rather than the disulfide linkage of most other CLaNP molecules, a thioether linkage was used to avoid reductive dissociation of the linker. The doubly GdIII labeled N55C/V57C/K147C/T151C variants of T4Lysozyme were measured by 95 GHz DEER. The constructs were measured in vitro, in cell lysate and in Dictyostelium discoideum cells. Measured distances were 4.5 nm, consistent with results from paramagnetic NMR. A narrow distance distribution and typical modulation depth, also in cell, indicate complete and durable labeling and probe rigidity due to the dual attachment sites

    Impact of fasting on F-18-fluorocholine gastrointestinal uptake and detection of lymph node metastases in patients with prostate cancer

    Get PDF
    BACKGROUND: (18)F-fluorocholine PET/CT is used to detect lymph node metastases in prostate cancer patients. Physiological (18)F-fluorocholine in the gastrointestinal tract, especially in the intestines, may interfere with the detection of malignant lymph nodes. Fasting is frequently proposed in literature; however, scientific support is lacking. This study aims to determine the impact of fasting on (18)F-fluorocholine uptake in the gastrointestinal tract. METHODS: Eighty patients were studied, 40 fasted for at least 6 h prior to (18)F-fluorocholine administration while the other 40 did not fast. (18)F-fluorocholine uptake pattern and intensity were evaluated in the intestine near the abdominal aorta and four regions near the iliac arteries. (18)F-fluorocholine intensity was also measured in the liver, pancreas, stomach and spleen. FINDINGS: No statistically significant differences were found in (18)F-fluorocholine uptake in the gastrointestinal tract between the fasting and non-fasting group. CONCLUSIONS: Fasting for 6 h has no effect on (18)F-fluorocholine uptake in the gastrointestinal tract. Therefore, no effects on the detection of malignant lymph nodes are expected, and fasting is not recommended in our opinion

    Investigating rare haematological disorders - A celebration of 10 years of the Sherlock Holmes symposia

    Get PDF
    The Sherlock Holmes symposia have been educating haematologists on the need for prompt recognition, diagnosis and treatment of rare haematological diseases for 10 years. These symposia, which are supported by an unrestricted educational grant from Sanofi Genzyme, encourage haematologists to consider rare disorders in differential diagnoses. Improvement in rare disease awareness is important because diagnostics and the availability of effective therapies have improved considerably, meaning that rare haematological diseases can be accurately diagnosed and successfully managed, particularly if they are identified early. The Sherlock Holmes symposia programme includes real-life interactive clinical cases of rare haematological disorders that require awareness from the physician, to be diagnosed at an early stage. The audience are encouraged to examine each case as if they were detectives, look for clues from the clinical history and presentation, consider the potential causes, assess which tests would be required to make a definitive diagnosis and suggest optimal treatment options. To celebrate the 10-year anniversary of the Sherlock Holmes symposia, this article describes a number of clinical cases that include anaemia, thrombocytopaenia and splenomegaly among the presenting symptoms, to illustrate the importance of rigorous differential diagnosis in the identification of rare haematological disorders

    The Progress Test of the European Hematology Association: A New Tool for Continuous Learning

    Full text link
    The European Hematology Curriculum, first launched in 2006, was created by the European Hematology Association (EHA) with the aim of harmonizing hema tology training in Europe. Its goals were to define the different areas hematologists are expected to cover during their training, and to establish the minimum recommended levels of competence that a hematology trainee should attain. EHA's education platform (EHA Campus) offers opportu nities for continuous learning for both trainees and specialists. Content is guided by the European Hematology Curriculum, which provides a structure for individual study and self-assess ment. To complete this organized learning environment, a tool for objective assessment of knowledge during and after specialist training was needed. In the spring of 2020, EHA started offering a progress test: a longitudinal test based on equivalent evalua tions given at fixed intervals, assessing developments in knowl edge. The EHA Progress Test was inspired by an earlier version developed by the Swedish Hematology Association in 2013, which has become widely used by specialist trainees and spe cialists in Sweden. Noticeable pedagogical effects, like targeted study efforts in weak knowledge areas, changes in clinical rota tions, and more have been reported in personal questionnaires

    Response prediction and evaluation using PET in patients with solid tumors treated with immunotherapy

    Get PDF
    Simple Summary In cancer treatment, immunotherapy is increasingly becoming important as a component of first-line treatment and has improved the prognosis of patients since its introduction. A large group of patients, however, do not respond to immunotherapy, and predicting a treatment response remains challenging. Furthermore, evaluating a response using conventional computed tomography (CT) scans is not straightforward due to the different mechanism of action of immunotherapy compared to chemotherapy. This review provides an overview of positron emission tomography (PET) in predicting and evaluating treatment response to immunotherapy. In multiple malignancies, checkpoint inhibitor therapy has an established role in the first-line treatment setting. However, only a subset of patients benefit from checkpoint inhibition, and as a result, the field of biomarker research is active. Molecular imaging with the use of positron emission tomography (PET) is one of the biomarkers that is being studied. PET tracers such as conventional F-18-FDG but also PD-(L)1 directed tracers are being evaluated for their predictive power. Furthermore, the use of artificial intelligence is under evaluation for the purpose of response prediction. Response evaluation during checkpoint inhibitor therapy can be challenging due to the different response patterns that can be observed compared to traditional chemotherapy. The additional information provided by PET can potentially be of value to evaluate a response early after the start of treatment and provide the clinician with important information about the efficacy of immunotherapy. Furthermore, the use of PET to stratify between patients with a complete response and those with a residual disease can potentially guide clinicians to identify patients for which immunotherapy can be discontinued and patients for whom the treatment needs to be escalated. This review provides an overview of the use of positron emission tomography (PET) to predict and evaluate treatment response to immunotherapy.Pathogenesis and treatment of chronic pulmonary disease

    Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial

    Get PDF
    Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales
    • …
    corecore