148 research outputs found

    A linear auroral current-voltage relation in fluid theory

    Get PDF
    Progress in our understanding of auroral currents and auroral electron acceleration has for decades been hampered by an apparent incompatibility between kinetic and fluid models of the physics involved. A well established kinetic model predicts that steady upward field-aligned currents should be linearly related to the potential drop along the field line, but collisionless fluid models that reproduce this linear current-voltage relation have not been found. Using temperatures calculated from the kinetic model in the presence of an upward auroral current, we construct here approximants for the parallel and perpendicular temperatures. Although our model is rather simplified, we find that the fluid equations predict a realistic large-scale parallel electric field and a linear current-voltage relation when these approximants are employed as nonlocal equations of state. This suggests that the concepts we introduce can be applied to the development of accurate equations of state for fluid simulations of auroral flux tubes.<br><br><b>Key words.</b> Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions) – Space plasma physics (kinetic and MHD theory

    Empagliflozin in Heart Failure With Predicted Preserved Versus Reduced Ejection Fraction: Data From the EMPA-REG OUTCOME Trial

    Get PDF
    Background: In the EMPA-REG OUTCOME trial, ejection fraction (EF) data were not collected. In the subpopulation with heart failure (HF), we applied a new predictive model for EF to determine the effects of empagliflozin in HF with predicted reduced (HFrEF) vs preserved (HFpEF) EF vs no HF. / Methods and Results: We applied a validated EF predictive model based on patient baseline characteristics and treatments to categorize patients with HF as being likely to have HF with mid-range EF (HFmrEF)/HFrEF (EF <50%) or HFpEF (EF ≥50%). Cox regression was used to assess the effect of empagliflozin vs placebo on cardiovascular death/HF hospitalization (HHF), cardiovascular and all-cause mortality, and HHF in patients with predicted HFpEF, HFmrEF/HFrEF and no HF. Of 7001 EMPA-REG OUTCOME patients with data available for this analysis, 6314 (90%) had no history of HF. Of the 687 with history of HF, 479 (69.7%) were predicted to have HFmrEF/HFrEF and 208 (30.3%) to have HFpEF. Empagliflozin's treatment effect was consistent in predicted HFpEF, HFmrEF/HFrEF and no-HF for each outcome (HR [95% CI] for the primary outcome 0.60 [0.31–1.17], 0.79 [0.51–1.23], and 0.63 [0.50–0.78], respectively; P interaction = 0.62). / Conclusions: In EMPA-REG OUTCOME, one-third of the patients with HF had predicted HFpEF. The benefits of empagliflozin on HF and mortality outcomes were consistent in nonHF, predicted HFpEF and HFmrEF/HFrEF

    Effects of DHA- Rich n-3 Fatty Acid Supplementation on Gene Expression in Blood Mononuclear Leukocytes: The OmegAD Study

    Get PDF
    Background: Dietary fish oil, rich in n-3 fatty acids (n-3 FAs), e. g. docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), regulate inflammatory reactions by various mechanisms, e. g. gene activation. However, the effects of long-term treatment with DHA and EPA in humans, using genome wide techniques, are poorly described. Hence, our aim was to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global gene expression in peripheral blood mononuclear cells. Methods and Findings: In the present study, blood samples were obtained from a subgroup of 16 patients originating from the randomized double-blind, placebo-controlled OmegAD study, where 174 Alzheimer disease (AD) patients received daily either 1.7 g of DHA and 0.6 g EPA or placebo for 6 months. In blood samples obtained from 11 patients receiving n-3 FA and five placebo, expressions of approximately 8000 genes were assessed by gene array. Significant changes were confirmed by real-time PCR. At 6 months, the n-3 FAs group displayed significant rises of DHA and EPA plasma concentrations, as well as up-and down-regulation of nine and ten genes, respectively, was noticed. Many of these genes are involved in inflammation regulation and neurodegeneration, e. g. CD63, MAN2A1, CASP4, LOC399491, NAIP, and SORL1 and in ubiqutination processes, e. g. ANAPC5 and UBE2V1. Down-regulations of ANAPC5 and RHOB correlated to increases of plasma DHA and EPA levels. Conclusions: We suggest that 6 months of dietary n-3 FA supplementatio

    Insights From Liver-Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR-Agonist Pharmacodynamics in Humans

    Get PDF
    Background and Aims Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. Approach and Results Fah(-/-), Rag2(-/-), and Il2rg(-/-) knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. Conclusions LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.Peer reviewe

    Fish oil administration in older adults: is there potential for adverse events? A systematic review of the literature

    Get PDF
    ackground: Omega-3 (n-3) fatty acid supplementation is becoming increasingly popular. However given its antithrombotic properties the potential for severe adverse events (SAE) such as bleeding has safety implications, particularly in an older adult population. A systematic review of randomized control trials (RCT) was conducted to explore the potential for SAE and non-severe adverse events (non-SAE) associated with n-3 supplementation in older adults. Methods: A comprehensive search strategy using Medline and a variety of other electronic sources was conducted. Studies investigating the oral administration of n-3 fish oil containing eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or both against a placebo were sourced. The primary outcome of interest included reported SAE associated with n-3 supplementation. Chi-square analyses were conducted on the pooled aggregate of AEs. Results: Of the 398 citations initially retrieved, a total of 10 studies involving 994 older adults aged ≥60 years were included in the review. Daily fish oil doses ranged from 0.03 g to 1.86 g EPA and/or DHA with study durations ranging from 6 to 52 weeks. No SAE were reported and there were no significant differences in the total AE rate between groups (n-3 intervention group: 53/540; 9.8%; placebo group: 28/454; 6.2%; p= 0.07). Non-SAE relating to gastrointestinal (GI) disturbances were the most commonly reported however there was no significant increase in the proportion of GI disturbances reported in participants randomized to the n-3 intervention (n-3 intervention group: 42/540 (7.8%); placebo group: 24/454 (5.3%); p= 0.18). Conclusions: The potential for AEs appear mild-moderate at worst and are unlikely to be of clinical significance. The use of n-3 fatty acids and the potential for SAE should however be further researched to investigate whether this evidence is consistent at higher doses and in other populations. These results also highlight that well-documented data outlining the potential for SAE following n-3 supplementation are limited nor adequately reported to draw definitive conclusions concerning the safety associated with n-3 supplementation. A more rigorous and systematic approach for monitoring and recording AE data in clinical settings that involve n-3 supplementation is required.The authors would like to acknowledge funding provided for the ongoing ATLANTIC randomized controlled trial supported by the National Health and Medical Research Council (NHMRC), Australia

    Impact of Empagliflozin in Heart Failure With Reduced Ejection Fraction in Patients With Ischemic Versus Nonischemic Cause

    Get PDF
    Background Outcomes and treatment effects of therapy may vary according to the cause of heart failure (HF). Methods and Results In this post hoc analysis of the EMPEROR-Reduced (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Reduced Ejection Fraction) trial, the effect of empagliflozin on cardiovascular and renal outcomes was assessed according to the cause of HF. The cause of HF was investigator reported and stratified as ischemic or nonischemic. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% CIs. Of the 3730 patients enrolled, 1929 (51.7%) had ischemic cause. In the placebo arm, patients with ischemic cause of HF did not have a significantly higher risk of cardiovascular mortality (HR, 1.21 [95% CI, 0.90-1.63]) and hospitalization for HF (HR, 0.90 [95% CI, 0.72-1.12]) compared with nonischemic cause. Empagliflozin compared with placebo significantly reduced the risk of cardiovascular death or hospitalization for HF in patients with ischemic and nonischemic cause (HR, 0.82 [95% CI, 0.68-0.99] for ischemic and HR, 0.67 [95% CI, 0.55-0.82] for nonischemic cause; P interaction=0.15). The benefit of empagliflozin on HF hospitalization, the renal composite end point, estimated glomerular filtration slope changes, and health status scores were also consistent in both groups without treatment by cause modification. Conclusions Empagliflozin offers cardiovascular and renal benefits in patients with heart failure with reduced ejection fraction regardless of the cause of HF. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03057977

    Transcriptomic Coordination in the Human Metabolic Network Reveals Links between n-3 Fat Intake, Adipose Tissue Gene Expression and Metabolic Health

    Get PDF
    Understanding the molecular link between diet and health is a key goal in nutritional systems biology. As an alternative to pathway analysis, we have developed a joint multivariate and network-based approach to analysis of a dataset of habitual dietary records, adipose tissue transcriptomics and comprehensive plasma marker profiles from human volunteers with the Metabolic Syndrome. With this approach we identified prominent co-expressed sub-networks in the global metabolic network, which showed correlated expression with habitual n-3 PUFA intake and urinary levels of the oxidative stress marker 8-iso-PGF2α. These sub-networks illustrated inherent cross-talk between distinct metabolic pathways, such as between triglyceride metabolism and production of lipid signalling molecules. In a parallel promoter analysis, we identified several adipogenic transcription factors as potential transcriptional regulators associated with habitual n-3 PUFA intake. Our results illustrate advantages of network-based analysis, and generate novel hypotheses on the transcriptomic link between habitual n-3 PUFA intake, adipose tissue function and oxidative stress

    Prognostic Importance of NT-proBNP and Effect of Empagliflozin in the EMPEROR-Reduced Trial

    Get PDF
    BACKGROUND: The relationship between the benefits of empagliflozin in heart failure with reduced ejection fraction (HFrEF) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) has not been reported. OBJECTIVES: The authors sought to evaluate the relationship between NT-proBNP and empagliflozin effects in EMPEROR-Reduced (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Reduced Ejection Fraction). METHODS: Patients with HFrEF were randomly assigned to placebo or empagliflozin 10 mg daily. NT-proBNP was measured at baseline, 4 weeks, 12 weeks, 52 weeks, and 100 weeks. Patients were divided into quartiles of baseline NT-proBNP. RESULTS: Incidence rates for each study outcome were 4- to 6-fold higher among those in the highest versus lowest NT-proBNP quartiles (≥3,480 vs <1,115 pg/mL). Study participants with higher NT-proBNP had 2- to 3-fold total hospitalizations higher than the lowest NT-proBNP quartile. Empagliflozin reduced risk for major cardiorenal events without heterogeneity across NT-proBNP quartiles (primary endpoint Pinteraction = 0.94; renal composite endpoint Pinteraction = 0.71). Empagliflozin treatment significantly reduced NT-proBNP at all timepoints examined; by 52 weeks, the adjusted mean difference from placebo was 13% (P < 0.001). An NT-proBNP in the lowest quartile (<1,115 pg/mL) 12 weeks after randomization was associated with lower risk for subsequent cardiovascular death or heart failure hospitalization regardless of baseline concentration. Treatment with empagliflozin resulted in 27% higher adjusted odds of an NT-proBNP concentration of <1,115 pg/mL by 12 weeks compared with placebo (P = 0.01). CONCLUSIONS: In EMPEROR-Reduced, higher baseline NT-proBNP concentrations were associated with greater risk for adverse heart failure or renal outcomes, but empagliflozin reduced risk regardless of baseline NT-proBNP concentration. The NT-proBNP concentration after treatment with empagliflozin better informs subsequent prognosis than pretreatment concentrations. (Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Reduced Ejection Fraction [EMPEROR-Reduced]; NCT03057977)

    Generation and dietary modulation of anti-inflammatory electrophilic omega-3 fatty acid derivatives

    Get PDF
    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2- dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods: Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30-55 years of age with a reported EPA+DHA consumption of ≤ 300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results: 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions: The endogenous detection of these electro.©2014 Cipollina et al
    • …
    corecore