117 research outputs found

    Extracorporeal cytokine hemadsorption for the treatment of refractory septic shock. Report of two cases

    Get PDF
    Indexación: Scopus.If Septic shock (SS) evolves to refractory SS, mortality could reach 90%, despite giving an optimal treatment. Nowadays, extracorporeal devices which adsorb inflammatory cytokines are available, reducing the systemic inflammatory response syndrome. These devices can be used with continuous renal replacement therapy or conventional hemodialysis. We report two diabetic females aged 50 and 58 years, who underwent a total colectomy and amputation of diabetic foot and who developed a SS with high requirements of vasoactive drugs (norepinephrine and adrenaline) to maintain a mean arterial pressure about 60 mmHg. Both were subjected to hemodialysis, connected to a cytokine hemadsorption device. The most important finding was the progressive reduction of vasopressor doses, effect that was observed nine hours after the beginning of the hemadsorption and lasted until its removal at 26 hours. Both patients survived. © 2018, Sociedad Medica de Santiago. All rights reserved.https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0034-98872018000600796&lng=en&nrm=iso&tlng=e

    The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

    Full text link
    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the "luminosity gap" between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.Comment: 7 pages, 5 figures, ApJL accepte

    GASP XXX. The spatially resolved SFR-Mass relation in stripping galaxies in the local universe

    Get PDF
    The study of the spatially resolved Star Formation Rate-Mass (Sigma_SFR-Sigma_M) relation gives important insights on how galaxies assemble at different spatial scales. Here we present the analysis of the Sigma_SFR-Sigma_M of 40 local cluster galaxies undergoing ram pressure stripping drawn from the GAs Stripping Phenomena in galaxies (GASP) sample. Considering their integrated properties, these galaxies show a SFR enhancement with respect to undisturbed galaxies of similar stellar mass; we now exploit spatially resolved data to investigate the origin and location of the excess. Even on ~1kpc scales, stripping galaxies present a systematic enhancement of Sigma_SFR (~0.35 dex at Sigma_M =108^M_sun/kpc^2) at any given Sigma_M compared to their undisturbed counterparts. The excess is independent on the degree of stripping and of the amount of star formation in the tails and it is visible at all galactocentric distances within the disks, suggesting that the star formation is most likely induced by compression waves from ram pressure. Such excess is larger for less massive galaxies and decreases with increasing mass. As stripping galaxies are characterised by ionised gas beyond the stellar disk, we also investigate the properties of 411 star forming clumps found in the galaxy tails. At any given stellar mass density, these clumps are systematically forming stars at a higher rate than in the disk, but differences are reconciled when we just consider the mass formed in the last few 10^8yr ago, suggesting that on these timescales the local mode of star formation is similar in the tails and in the disks.Comment: 20 pages, 13 figures, accepted for publication in Ap

    Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humboldt Current upwelling system)

    Get PDF
    The macrozoobenthos of Mejillones Bay (23°S; Humboldt Current) was quantitatively investigated over a 7-year period from austral summer 1995/1996 to winter 2002. About 78 van Veen grab samples taken at six stations (5, 10, 20 m depth) provided the basis for the analysis of the distribution of 60 species and 28 families of benthic invertebrates, as well as of their abundance and biomass. Mean abundance (2,119 individuals m-2) was in the same order compared to a previous investigation; mean biomass (966 g formalin wet mass m-2), however, exceeded prior estimations mainly due to the dominance of the bivalve Aulacomya ater. About 43% of the taxa inhabited the complete depth range. Mean taxonomic Shannon diversity (H', Log e) was 1.54 ± 0.58 with a maximum at 20 m (1.95 ± 0.33); evenness increased with depth. The fauna was numerically dominated by carnivorous gastropods, polychaetes and crustaceans (48%). About 15% of the species were suspensivorous, 13% sedimentivorous, 11% detritivorous, 7% omnivorous and 6% herbivorous. Cluster analyses showed a significant difference between the shallow and the deeper stations. Gammarid amphipods and the polychaete family Nephtyidae characterized the 5-mzone, the molluscs Aulacomya ater, Mitrella unifasciata and gammarids the intermediate zone, while the gastropod Nassarius gayi and the polychaete family Nereidae were most prominent at the deeper stations. The communities of the three depth zones did not appear to be limited by hypoxia during non-El Niño conditions. Therefore, no typical change in community structure occurred during El Niño 1997–1998, in contrast to what was observed for deeper faunal assemblages and hypoxic bays elsewhere in the coastal Humboldt Current system

    GASP XXXVIII: The LOFAR-MeerKAT-VLA View on the Nonthermal Side of a Jellyfish Galaxy

    Get PDF
    Ram pressure stripping is a crucial evolutionary driver for cluster galaxies. It is thought to be able to accelerate the evolution of their star formation, trigger the activity of their central active galactic nucleus (AGN) and the interplay between galactic and environmental gas, and eventually dissipate their gas reservoirs. We explored the outcomes of ram pressure stripping by studying the nonthermal radio emission of the jellyfish galaxy JW100 in the cluster A2626 (z = 0.055), by combining LOw Frequency Array, MeerKAT, and Very Large Array observations from 0.144 to 5.5 GHz. We studied the integrated spectra of the stellar disk, the stripped tail, and the AGN; mapped the spectral index over the galaxy; and constrained the magnetic field intensity to between 11 and 18 μG in the disk and <10 μG in the tail. The stellar disk radio emission is dominated by a radiatively old plasma, likely related to an older phase of a high star formation rate. This suggests that the star formation was quickly quenched by a factor of 4 in a few 107 yr. The radio emission in the tail is consistent with the stripping scenario, where the radio plasma that originally accelerated in the disk is subsequently displaced in the tail. The morphology of the radio and X-ray emissions supports the scenario of the accretion of magnetized environmental plasma onto the galaxy. The AGN nonthermal spectrum indicates that relativistic electron acceleration may have occurred simultaneously with a central ionized gas outflow, thus suggesting a physical connection between the two processes

    GASP XXXIV: Unfolding the thermal side of ram pressure stripping in the jellyfish galaxy JO201

    Get PDF
    X-ray studies of jellyfish galaxies play a crucial role in understanding the interactions between the interstellar medium (ISM) and the intracluster medium (ICM). In this paper, we focused on the jellyfish galaxy JO201. By combining archival Chandra observations, MUSE Hα\alpha cubes, and maps of the emission fraction of the diffuse ionised gas, we investigated both its high energy spectral properties and the spatial correlation between its X-ray and optical emissions. The X-ray emission of JO201 is provided by both the Compton thick AGN (LX0.510keV_{\text{X}}^{0.5-10 \text{keV}}=2.7\cdot1041^{41} erg s1^{-1}, not corrected for intrinsic absorption) and an extended component (LX0.510keV_{\text{X}}^{0.5-10 \, \text{keV}}\approx1.9-4.5\cdot1041^{41} erg s1^{-1}) produced by a warm plasma (kT\approx1 keV), whose luminosity is higher than expected from the observed star formation (LX_{\text{X}}\sim3.81040\cdot10^{40} erg s1^{-1}). The spectral analysis showed that the X-ray emission is consistent with the thermal cooling of hot plasma. These properties are similar to the ones found in other jellyfish galaxies showing extended X-ray emission. A point-to-point analysis revealed that this X-ray emission closely follows the ISM distribution, whereas CLOUDY simulations proved that the ionisation triggered by this warm plasma would be able to reproduce the [OI]/Hα\alpha excess observed in JO201. We conclude that the galactic X-ray emitting plasma is originated on the surface of the ISM as a result of the ICM-ISM interplay. This process would entail the cooling and accretion of the ICM onto the galaxy, which could additionally fuel the star formation, and the emergence of [OI]/Hα\alpha excess in the optical spectrum.Comment: 21 pages, 6 figures, 5 tables. Manuscript in press in Ap

    GASP XXXIV: Unfolding the thermal side of ram pressure stripping in the jellyfish galaxy JO201

    Get PDF
    X-ray studies of jellyfish galaxies play a crucial role in understanding the interactions between the interstellar medium (ISM) and the intracluster medium (ICM). In this paper, we focused on the jellyfish galaxy JO201. By combining archival Chandra observations, Multi Unit Spectroscopic Explorer Hα cubes, and maps of the emission fraction of the diffuse ionized gas, we investigated both its high-energy spectral properties and the spatial correlation between its X-ray and optical emissions. The X-ray emission of JO201 is provided by both the Compton-thick active galactic nucleus (L0.5X-10keV = 2.7 · 1041 erg s−1, not corrected for intrinsic absorption) and an extended component (L0.5X–10 keV » 1.9–4.5 · 1041 erg s−1) produced by a warm plasma (kT»1 keV), whose luminosity is higher than expected from the observed star formation (LX ~ 3.8 · 1040erg s−1). The spectral analysis showed that the X-ray emission is consistent with the thermal cooling of hot plasma. These properties are similar to the ones found in other jellyfish galaxies showing extended X-ray emission. A point-to-point analysis revealed that this X-ray emission closely follows the ISM distribution, whereas CLOUDY simulations proved that the ionization triggered by this warm plasma would be able to reproduce the [O I]/Hα excess observed in JO201. We conclude that the galactic X-ray emitting plasma originates on the surface of the ISM as a result of the ICM–ISM interplay. This process would entail the cooling and accretion of the ICM onto the galaxy, which could additionally fuel the star formation, and the emergence of [O I]/Hα excess in the optical spectrum

    (Sub)millimetre interferometric imaging of a sample of COSMOS/AzTEC submillimetre galaxies

    Get PDF
    We investigate the environment of 23 submillimetre galaxies (SMGs) drawn from a signal-to-noise (S/N)-limited sample of SMGs originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey of a Cosmic Evolution Survey (COSMOS) subfield and then followed up with the Submillimetre Array and Plateau de Bure Interferometer at 890 mu m and 1.3 mm, respectively. These SMGs already have well-defined multiwavelength counterparts and redshifts. We also analyse the environments of four COSMOS SMGs spectroscopically confirmed to lie at redshifts z(spec) > 4 : 5, and one at z(spec) = 2 : 49 resulting in a total SMG sample size of 28. We search for overdensities using the COSMOS photometric redshifts based on over 30 UV-NIR photometric measurements including the new UltraVISTA data release 2 and Spitzer/SPLASH data, and reaching an accuracy of sigma(Delta z/(1+z)) = (1 + z) = 0 : 0067 (0 : 0155) at z 3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the redshift-space overdensity estimator delta(g) as a function of distance from the SMG and/or overdensity centre. We test and validate our approach via simulations, X-ray detected groups or clusters, and spectroscopic verifications using VUDS and zCOSMOS catalogues which show that even with photometric redshifts in the COSMOS field we can e ffi ciently retrieve overdensities out to z approximate to 5. Our results yield that 11 out of 23 (48%) JCMT/AzTEC 1.1 mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1 mm S = N >= 4 sample and taking the expected fraction of spurious detections into account, this means that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2 keV band using a 32 '' aperture and our SMG positions, and find statistically significant detections. For our z 2 subsample yields an average flux of (1.3 +/- 0.5) x 10(-16) erg s(-1) cm(-2) and a corresponding total mass of M-200 = 2 x 10(13) M-circle dot. Our results suggest a higher occurrence of SMGs occupying overdense environments at z >= 3 than at z <3. This may be understood if highly star-forming galaxies can only be formed in the highest peaks of the density field tracing the most massive dark matter haloes at early cosmic epochs, while at later times cosmic structure may have matured su ffi ciently that more modest overdensities correspond to su ffi ciently massive haloes to form SMGs.Peer reviewe
    corecore