76 research outputs found

    B-Chromosome Ribosomal DNA Is Functional in the Grasshopper Eyprepocnemis plorans

    Get PDF
    B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B24 chromosome in the grasshopper Eyprepocnemis plorans frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B24 chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in E. plorans is functional since it is actively transcribed to form the nucleolus attached to the B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes.This study was supported by a grant from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917), and was partially performed by FEDER funds. M. Ruiz-Estévez was supported by a fellowship (FPU) from the Spanish Ministerio de Ciencia e Innovación

    A High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations

    Get PDF
    Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., γH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse

    Preferential Occupancy of R2 Retroelements on the B Chromosomes of the Grasshopper Eyprepocnemis plorans

    Get PDF
    R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917) and Plan Andaluz de Investigacion (CVI-6649), and was partially performed by FEDER funds and a grant from the National Institutes of Health (GM42790)

    Sequential Assembly of Centromeric Proteins in Male Mouse Meiosis

    Get PDF
    The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis. These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1 and CENP-E

    NOR and nucleolus in the spermatogenesis of acridoid grasshoppers

    No full text
    6 p.-3 fig.-1 tab.By means of silver staining procedures of light microscopy the characteristics of the nucleolus and the NORs have been investigated in meiocytes of different grasshopper species. Our results show that: (1) Two is the most common number of chromosomes per haploid genome carrying active NORs although this number may vary from one up to five; (2) NOR activity is preferentially located on medium and short chromosomes but the X and the megameric chromosome are involved in nucleolar organization in a high proportion of the species studied; (3) The NOR location is normally restricted to one end in acro-telocentrics and to the short arm, near the centromere region, in metacentrics; (4) A marked correlation is observed between the number of nucleoli present in the spermatogonial cells and in the first meiotic prophase of a given species; (5) In some cases, the nucleoli are associated to chromosomes during spermatogonial premetaphases.This work was supported by the Comisión Asesora para la Investigación Científica y Técnica (Spain).Peer reviewe

    Localization and development of kinetochores and a chromatid core during meiosis in grasshoppers

    No full text
    6 p.-3 fig.Positive staining of kinetochores and a chromatid core has been achieved using a simplified silver staining method in squash preparations from meiotic chromosomes of grasshoppers. This technique permits the exact localization of kinetochores on the chromosomes whether metacentric, acrocentric or ‘telocentric’. The sister kinetochores can be observed from mid-diplotene stages but they are not differentiated during first meiotic metaphase. However they can be observed again at the onset of anaphase 1. The existence of a positively stained chromatid core in meiotic divisions is also reported. This core appears well defined inside each chromatid from diplotene to the end of the second meiotic division. The visualization of these cores in first meiotic metaphase clearly shows the points at which the chiasmata took place.This report was partially supported by C.A.I.C.Y.T. (Spain).Peer reviewe

    Drosophila cohesins DSA1 and Drad21 persist and colocalize along the centromeric heterochromatin during mitosis

    Get PDF
    Sister chromatid cohesion in eukaryotes is maintained mainly by a conserved multiprotein complex termed cohesin. Drad21 and DSA1 are the Drosophila homologues of the yeast Scc1 and Scc3 cohesin subunits, respectively. We recently identified a Drosophila mitotic cohesin complex composed of Drad21/DSA1/DSMC1/DSMC3. Here we study the contribution of this complex to sister chromatid cohesion using immunofluorescence microscopy to analyze cell cycle chromosomal localization of DSA1 and Drad21 in S2 cells. We observed that DSA1 and Drad21 colocalize during all cell cycle stages in cultured cells. Both proteins remain in the centromere until metaphase, colocalizing at the centromere pairing domain that extends along the entire heterochromatin; the centromeric cohesion protein MEI-S332 is nonetheless reported in a distinct centromere domain. These results provide strong evidence that DSA1 and Drad21 are partners in a cohesin complex involved in the maintenance of sister chromatid arm and centromeric cohesion during mitosis in Drosophila

    The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements

    No full text
    Unlike eutherian males, pairing of the sex chromosomes in marsupial males during the first meiotic prophase is not mediated by a synaptonemal complex. Instead, a specific structure, the dense plate, develops during pachytene between the sex chromosomes. We have investigated the development and structural, nature of this asynaptic association in males of the marsupial species Thylamys elegans by means of immunolabelling and electron microscopy techniques. Our results show that the behaviour of male marsupial sex chromosomes during first meiotic prophase is complex, involving modifications of their structure and/or composition. Pairing of the sex chromosomes and formation of the dense plate take place in mid pachytene, paralleling morphological changes in the sex chromosomal axial elements. Components of the central element of the synaptonemal complex were not found in the sex body, in agreement with ultrastructural studies that reported the absence of a canonical tripartite synaptonemal complex between male marsupial sex chromosomes. Interestingly, the dense plate is labelled with antibodies against the SCP3 protein of the lateral elements of the synaptonemal complex. Moreover, as sex chromosome axial elements decrease in mass throughout mid-late pachytene, the dense plate increases, suggesting that material moves from the axial elements to the dense plate. Additionally, both sex chromosome axial elements and the dense plate have proteins that are specifically phosphorylated, as revealed by their labelling with the MPM-2 antibody, indicating that they undergo a chromosome-specific regulation process throughout first meiotic prophase. We propose that the unique modifications of the composition and structure of the axial elements of the sex chromosomes in meiotic prophase may result in the proscription of synaptonemal complex formation between male marsupial sex chromosomes, where the dense plate is an extension of the axial elements of sex chromosomes. This replaces synapsis to maintain X and Y association during first meiotic prophase

    Expression and behaviour of CENP-E at kinetochores during mouse spermatogenesis

    No full text
    Centromere protein E (CENP-E) is a microtubule motor protein localised in the outer kinetochore plate and in the fibrous corona that relocalises to the midzone in early anaphase. While its expression in somatic cells has been widely analysed, an accurate description of its behaviour during the two meiotic divisions has not yet been reported. We have carefully analysed by immunofluorescence the subcellular distribution of CENP-E during mouse spermatogenesis. CENP-E first appears during late diakinesis/early prometaphase I as very bright C-shaped or "crescent" signals at each homologous centromere. These crescent CENP-E signals are also observed in unaligned prometaphase I bivalents that are not attached to spindle microtubules, while in bi-oriented metaphase I bivalents two kinds of fainter signals are observed. Thus, some bivalents present a plate-like signal while others show a pair of spots representing sister kinetochores at each homologous centromere. Double labelling of CENP-E wi

    A high incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple robertsonian translocations

    No full text
    Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., cH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse
    corecore