79 research outputs found

    VLBI observations of jupiter with the initial test station of LOFAR and the nancay decametric array

    Get PDF
    AIMS: To demonstrate and test the capability of the next generation of low-frequency radio telescopes to perform high resolution observations across intra-continental baselines. Jupiter's strong burst emission is used to perform broadband full signal cross-correlations on time intervals of up to hundreds of milliseconds. METHODS: Broadband VLBI observations at about 20 MHz on a baseline of ~50000 wavelengths were performed to achieve arcsecond angular resolution. LOFAR's Initial Test Station (LOFAR/ITS, The Netherlands) and the Nancay Decametric Array (NDA, France) digitize the measured electric field with 12 bit and 14 bit in a 40 MHz baseband. The fine structure in Jupiter's signal was used for data synchronization prior to correlation on the time-series data. RESULTS: Strong emission from Jupiter was detected during snapshots of a few seconds and detailed features down to microsecond time-scales were identified in dynamic spectra. Correlations of Jupiter's burst emission returned strong fringes on 1 ms time-scales over channels as narrow as a hundred kilohertz bandwidth. CONCLUSIONS: Long baseline interferometry is confirmed at low frequencies, in spite of phase shifts introduced by variations in ionospheric propagation characteristics. Phase coherence was preserved over tens to hundreds of milliseconds with a baseline of ~700 km. No significant variation with time was found in the correlations and an estimate for the fringe visibility of 1, suggested that the source was not resolved. The upper limit on the source region size of Jupiter Io-B S-bursts corresponds to an angular resolution of ~3 arcsec. Adding remote stations to the LOFAR network at baselines up to thousand kilometers will provide 10 times higher resolution down to an arcsecond.Comment: 6 pages, 4 figures. Nigl, A., Zarka, P., Kuijpers, J., Falcke, H., Baehren, L., VLBI observations of Jupiter with the Initial Test Station of LOFAR and the Nancay Decametric Array, A&A, 471, 1099-1104, accepted on 31/05/200

    The effect of metallicity on the Cepheid distance scale and its implications for the Hubble constant (H0H_0) determination

    Full text link
    Recent HST determinations of the expansion's rate of the Universe (the Hubble constant, H_0) assumed that the Cepheid Period-Luminosity relation at V and I are independent of metallicity (Freedman, et al., 1996, Saha et al., 1996, Tanvir et al., 1995). The three groups obtain different vales for H_0. We note that most of this discrepancy stems from the asumption (by both groups) that the Period-Luminosity relation is independent of metallicity. We come to this conclusion as a result of our study of the Period-Luminosity relation of 481 Cepheids with 3 millions two colour measurements in the Large Magellanic Cloud and the Small Magellanic Cloud obtained as a by-product of the EROS microlensing survey. We find that the derived interstellar absorption corrections are particularly sensitive to the metallicity and when our result is applied to recent estimates based on HST Cepheids observations it makes the low-H_0 values higher and the high-H_0 value lower, bringing those discrepant estimates into agrement around H0≈70km/sMpc−1H_0 \approx 70 km/s Mpc^{-1}.Comment: 4 pages, Latex, with 2 .ps accepted for publication astronomy and astrophysics Letter

    EROS Variable Stars : Discovery of Beat Cepheids in the Small Magellanic Cloud and the effect of metallicity on pulsation

    Get PDF
    We report the discovery of eleven beat Cepheids in the Small Magellanic Cloud, using data obtained by the EROS microlensing survey. Four stars are beating in the fundamental and first overtone mode (F/1OT), seven are beating in the first and second overtone (1OT/2OT). The SMC F/1OT ratio is systematically higher than the LMC F/1OT, while the 1OT/2OT period ratio in the SMC Cepheids is the same as the LMC one.Comment: 4 pages, Latex file with 4 .ps figures. accepted for publication in A A Letter

    Observational Limits on Machos in the Galactic Halo

    Get PDF
    We present final results from the first phase of the EROS search for gravitational microlensing of stars in the Magellanic Clouds by unseen deflectors (machos: MAssive Compact Halo Objects). The search is sensitive to events with time scales between 15 minutes and 200 days corresponding to deflector masses in the range 1.e-7 to a few solar masses. Two events were observed that are compatible with microlensing by objects of mass of about 0.1 Mo. By comparing the results with the expected number of events for various models of the Galaxy, we conclude that machos in the mass range [1.e-7, 0.02] Mo make up less than 20% (95% C.L.) of the Halo dark matter.Comment: 4 pages, 3 Postscript figures, to be published in Astronomy & Astrophysic

    Magnetic coupling of planets and small bodies with a pulsar wind"

    Get PDF
    We investigate the electromagnetic interaction of a relativistic stellar wind with a planet or a smaller body in orbit around the star. This may be relevant to objects orbiting a pulsar, such as PSR B1257+12 and PSR B1620-26 that are expected to hold a planetary system, or to pulsars with suspected asteroids or comets. We extend the theory of Alfv\'en wings to relativistic winds. When the wind is relativistic albeit slower than the total Alfv\'en speed, a system of electric currents carried by a stationary Alfv\'enic structure is driven by the planet or by its surroundings. For an Earth-like planet around a "standard" one second pulsar, the associated current can reach the same magnitude as the Goldreich-Julian current that powers the pulsar's magnetosphere.Comment: ccepted for publication in "Astronomy and Astrophysics

    Modelling the radio pulses of an ultracool dwarf

    Get PDF
    <b>Context:</b> Recently, unanticipated magnetic activity in ultracool dwarfs (UCDs, spectral classes later than M7) has emerged from a number of radio observations. The highly (up to 100%) circularly polarized nature and high brightness temperature of the emission have been interpreted as requiring an effective amplification mechanism of the high-frequency electromagnetic waves − the electron cyclotron maser instability (ECMI). <p/><b>Aims:</b> We aim to understand the magnetic topology and the properties of the radio emitting region and associated plasmas in these ultracool dwarfs, interpreting the origin of radio pulses and their radiation mechanism. <p/><b>Methods:</b> An active region model was built, based on the rotation of the UCD and the ECMI mechanism. <p/><b>Results:</b> The high degree of variability in the brightness and the diverse profile of pulses can be interpreted in terms of a large-scale hot active region with extended magnetic structure existing in the magnetosphere of TVLM 513-46546. We suggest the time profile of the radio light curve is in the form of power law in the model. Combining the analysis of the data and our simulation, we can determine the loss-cone electrons have a density in the range of 1.25 × 105−5 × 105 cm-3 and temperature between 107 and 5 × 107 K. The active region has a size <1 RJup, while the pulses produced by the ECMI mechanism are from a much more compact region (e.g. ~0.007 RJup). A surface magnetic field strength of ≈7000 G is predicted. <p/><b>Conclusions:</b> The active region model is applied to the radio emission from TVLM 513-46546, in which the ECMI mechanism is responsible for the radio bursts from the magnetic tubes and the rotation of the dwarf can modulate the integral of flux with respect to time. The radio emitting region consists of complicated substructures. With this model, we can determine the nature (e.g. size, temperature, density) of the radio emitting region and plasma. The magnetic topology can also be constrained. We compare our predicted X-ray flux with Chandra X-ray observation of TVLM 513-46546. Although the X-ray detection is only marginally significant, our predicted flux is significantly lower than the observed flux. Further multi-wavelength observations will help us better understand the magnetic field structure and plasma behavior on the ultracool dwarf

    EROS VARIABLE STARS : FUNDAMENTAL-MODE AND FIRST OVERTONE CEPHEIDS IN THE BAR OF THE LARGE MAGELLANIC CLOUD

    Full text link
    We present CCD phase-binned light curves at 490 nm for 97 Cepheid variable stars in the bar of the LMC. The photometry was obtained as part of the French EROS project and has excellent phase coverage, permitting accurate decomposition into Fourier components. We identify as `sinusoidal' or s-Cepheids those stars with periods less than 5.5 d and small second-harmonic components. These stars comprise ∌\sim30% of our sample and most form a sequence ∌\sim1 mag brighter than the LMC classical Cepheids in the period-luminosity diagram. They are also generally bluer and have lower-amplitude light curves. We infer that the s-Cepheids are first-overtone pulsators because, when their periods are converted to expected fundamental-mode values, they obey a common period-luminosity-colour relation with classical Cepheids. This also confirms the reality of the colour term in the Cepheid period-luminosity-colour relation. Further, the blue edge of the classical Cepheid instability strip agrees well with the theoretical calculations for the fundamental mode made by Chiosi et al. (1993) for the Hertzsprung-Russell and period-luminosity diagrams, but we find that our observed s-Cepheids are >0.2>0.2 mag brighter and bluer than the Chiosi et al.\ predictions for the first-overtone. We identify a number of features in plots of our stars' Fourier-component amplitude ratios and phase differences. These features have been identified with resonances between different pulsation modes. In the LMC we find these features seem to occur at periods very similar to Galactic ones for classical Cepheids, but at different periods for s-Cepheids. We discover a double-mode Cepheid in the LMC, for which P(firstovertone)/P(fundamental)=0.710±0.001P({\rm first overtone})/P({\rm fundamental}) = 0.710 \pm 0.001, very similar to observed ratios for Galactic double-mode Cepheids.Comment: 19 pages, uuencoded compressed PS file, including 14 figures. Accepted for publication in Astronomy and Astrophysics, February-2-199
    • 

    corecore