883 research outputs found
Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean
Experimental and modelling work suggests a strong dependence of olive flowering date on spring temperatures. Since airborne pollen concentrations reflect the flowering phenology of olive populations within a radius of 50 km, they may be a sensitive regional indicator of climatic warming. We assessed this potential sensitivity with phenology models fitted to flowering dates inferred from maximum airborne pollen data. Of four models tested, a thermal time model gave the best fit for Montpellier, France, and was the most effective at the regional scale, providing reasonable predictions for 10 sites in the western Mediterranean. This model was forced with replicated future temperature simulations for the western Mediterranean from a coupled ocean-atmosphere general circulation model (GCM). The GCM temperatures rose by 4·5 °C between 1990 and 2099 with a 1% per year increase in greenhouse gases, and modelled flowering date advanced at a rate of 6·2 d per °C. The results indicated that this long-term regional trend in phenology might be statistically significant as early as 2030, but with marked spatial variation in magnitude, with the calculated flowering date between the 1990s and 2030s advancing by 3–23 d. Future monitoring of airborne olive pollen may therefore provide an early biological indicator of climatic warming in the Mediterranean
Shrub encroachment in Arctic tundra : Betula nana effects on above- and belowground litter decomposition
Author Posting. © Ecological Society of America, 2017. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 98 (2017): 1361–1376, doi:10.1002/ecy.1790.Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by negative litter mixing effects during the early stages of encroachment.National Science Foundation Grant Numbers: OPP-0909507, OPP-0807639, ARC-0806451;
Arctic LTER Project. Grant Number: DEB-102684
Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems
We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE
Methodological approaches to determining the marine radiocarbon reservoir effect
The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP
OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence
Quantifying gross primary production (GPP) remains a major challenge in global carbon cycle research. Spaceborne monitoring of solar-induced chlorophyll fluorescence (SIF), an integrative photosynthetic signal of molecular origin, can assist in terrestrial GPP monitoring. However, the extent to which SIF tracks spatiotemporal variations in GPP remains unresolved. Orbiting Carbon Observatory-2 (OCO-2)’s SIF data acquisition and fine spatial resolution permit direct validation against ground and airborne observations. Empirical orthogonal function analysis shows consistent spatiotemporal correspondence between OCO-2 SIF and GPP globally. A linear SIF-GPP relationship is also obtained at eddy-flux sites covering diverse biomes, setting the stage for future investigations of the robustness of such a relationship across more biomes. Our findings support the central importance of high-quality satellite SIF for studying terrestrial carbon cycle dynamics
The ECCO-Darwin Data-Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean \u3cem\u3ep\u3c/em\u3eCO\u3csub\u3e2\u3c/sub\u3e and Air-Sea CO\u3csub\u3e2\u3c/sub\u3e Flux
Quantifying variability in the ocean carbon sink remains problematic due to sparse observations and spatiotemporal variability in surface ocean pCO2. To address this challenge, we have updated and improved ECCO-Darwin, a global ocean biogeochemistry model that assimilates both physical and biogeochemical observations. The model consists of an adjoint-based ocean circulation estimate from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data-constrained ECCO physics, a Green\u27s function approach is used to optimize the biogeochemistry by adjusting initial conditions and six biogeochemical parameters. Over seasonal to multidecadal timescales (1995–2017), ECCO-Darwin exhibits broad-scale consistency with observed surface ocean pCO2 and air-sea CO2 flux reconstructions in most biomes, particularly in the subtropical and equatorial regions. The largest differences between CO2 uptake occur in subpolar seasonally stratified biomes, where ECCO-Darwin results in stronger winter uptake. Compared to the Global Carbon Project OBMs, ECCO-Darwin has a time-mean global ocean CO2 sink (2.47 ± 0.50 Pg C year−1) and interannual variability that are more consistent with interpolation-based products. Compared to interpolation-based methods, ECCO-Darwin is less sensitive to sparse and irregularly sampled observations. Thus, ECCO-Darwin provides a basis for identifying and predicting the consequences of natural and anthropogenic perturbations to the ocean carbon cycle, as well as the climate-related sensitivity of marine ecosystems. Our study further highlights the importance of physically consistent, property-conserving reconstructions, as are provided by ECCO, for ocean biogeochemistry studies
Attribution of space-time variability in global-ocean dissolved inorganic Carbon
The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995–2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year−1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2 (1.4 Pg C). In the upper 100 m, which stores roughly 13 (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year−1) and biological processes are the largest loss (8.6 Pg C year−1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997–1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink. © 2022. The Authors
The ECCO‐Darwin Data‐Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean pCO₂ and Air‐Sea CO₂ Flux
Quantifying variability in the ocean carbon sink remains problematic due to sparse observations and spatiotemporal variability in surface ocean pCO₂. To address this challenge, we have updated and improved ECCO‐Darwin, a global ocean biogeochemistry model that assimilates both physical and biogeochemical observations. The model consists of an adjoint‐based ocean circulation estimate from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data‐constrained ECCO physics, a Green's function approach is used to optimize the biogeochemistry by adjusting initial conditions and six biogeochemical parameters. Over seasonal to multidecadal timescales (1995–2017), ECCO‐Darwin exhibits broad‐scale consistency with observed surface ocean pCO₂ and air‐sea CO₂ flux reconstructions in most biomes, particularly in the subtropical and equatorial regions. The largest differences between CO₂ uptake occur in subpolar seasonally stratified biomes, where ECCO‐Darwin results in stronger winter uptake. Compared to the Global Carbon Project OBMs, ECCO‐Darwin has a time‐mean global ocean CO₂ sink (2.47 ± 0.50 Pg C year⁻¹) and interannual variability that are more consistent with interpolation‐based products. Compared to interpolation‐based methods, ECCO‐Darwin is less sensitive to sparse and irregularly sampled observations. Thus, ECCO‐Darwin provides a basis for identifying and predicting the consequences of natural and anthropogenic perturbations to the ocean carbon cycle, as well as the climate‐related sensitivity of marine ecosystems. Our study further highlights the importance of physically consistent, property‐conserving reconstructions, as are provided by ECCO, for ocean biogeochemistry studies
- …