1,205 research outputs found

    Quantum criticality in the cubic heavy-fermion system CeIn_{3-x}Sn_x

    Full text link
    We report a comprehensive study of CeIn3−x_{3-x}Snx_x (0.55≤x≤0.8)(0.55 \leq x \leq 0.8) single crystals close to the antiferromagnetic (AF) quantum critical point (QCP) at xc≈0.67x_c\approx 0.67 by means of the low-temperature thermal expansion and Gr\"uneisen parameter. This system represents the first example for a {\it cubic} heavy fermion (HF) in which TNT_{\rm N} can be suppressed {\it continuously} down to T=0. A characteristic sign change of the Gr\"uneisen parameter between the AF and paramagnetic state indicates the accumulation of entropy close to the QCP. The observed quantum critical behavior is compatible with the predictions of the itinerant theory for three-dimensional critical spinfluctuations. This has important implications for the role of the dimensionality in HF QCPs.Comment: Physical Review Letters, to be publishe

    Exploring high temperature magnetic order in CeTi_1-xSc_xGe

    Full text link
    Most of magnetic transitions related to Ce ordering are found below T_ord~12K. Among the few cases exceeding that temperature, two types of behaviors can be distinguished. One of them is related to the rare cases of Ce binary compounds formed in BCC structures, with a quartet ground state, whose degeneracy is reduced by undergoing different types of transitions mostly structural. The other group shows evidences of itinerant character with the outstanding example of CeRh_3B_2 showing the highest T_ord=115K. The second highest ordering temperature has been reported for CeScGe with T_ord=47K, but the nature of this magnetic state has not been investigated very deeply. In order to shed more light into this unusual high temperature ordering we studied the structural, magnetic, transport and thermal properties of CeTi_1-xSc_xGe alloys in the stability range of the CeScSi-type structure 0.25<x<1 This system presents a rich variety of magnetic behaviors along this concentration range, with the magnetic ordering growing from ferromagnetic (FM) T_C~7K up to an antiferromagnetic (AFM) transition at T_N=47K. The different regions show the following characteristics: i) on the Ti rich side (0.25<x<0.50) it exhibits a FM ground state (GS) with large saturation magnetization values M_sat up to ~1.15 mu_B. ii) Around x=0.60, the first crystal electric field excited doublet starts to contribute to the GS magnetic properties. Furthermore an AFM component with a connected metamagnetic transition appears. iii) At x=0.65 a clear change in the GS nature is associated to a critical point above which the GS properties can be described like for an itinerant system (with decreasing M_sat) and an effective GS degeneracy N_eff=4. iv) For x>0.65, the magnetic phase boundary splits into two transitions, with an intermediate phase presenting incommensurate spin density waves features.Comment: 8 pages, 10 figure

    Speckle Statistics in Adaptively Corrected Images

    Full text link
    (abridged) Imaging observations are generally affected by a fluctuating background of speckles, a particular problem when detecting faint stellar companions at small angular separations. Knowing the distribution of the speckle intensities at a given location in the image plane is important for understanding the noise limits of companion detection. The speckle noise limit in a long-exposure image is characterized by the intensity variance and the speckle lifetime. In this paper we address the former quantity through the distribution function of speckle intensity. Previous theoretical work has predicted a form for this distribution function at a single location in the image plane. We developed a fast readout mode to take short exposures of stellar images corrected by adaptive optics at the ground-based UCO/Lick Observatory, with integration times of 5 ms and a time between successive frames of 14.5 ms (λ=2.2\lambda=2.2 μ\mum). These observations temporally oversample and spatially Nyquist sample the observed speckle patterns. We show, for various locations in the image plane, the observed distribution of speckle intensities is consistent with the predicted form. Additionally, we demonstrate a method by which IcI_c and IsI_s can be mapped over the image plane. As the quantity IcI_c is proportional to the PSF of the telescope free of random atmospheric aberrations, this method can be used for PSF calibration and reconstruction.Comment: 7 pages, 4 figures, ApJ accepte

    Quantum Criticality in doped CePd_1-xRh_x Ferromagnet

    Full text link
    CePd_1-xRh_x alloys exhibit a continuous evolution from ferromagnetism (T_C= 6.5 K) at x = 0 to a mixed valence (MV) state at x = 1. We have performed a detailed investigation on the suppression of the ferromagnetic (F) phase in this alloy using dc-(\chi_dc) and ac-susceptibility (\chi_ac), specific heat (C_m), resistivity (\rho) and thermal expansion (\beta) techniques. Our results show a continuous decrease of T_C (x) with negative curvature down to T_C = 3K at x*= 0.65, where a positive curvature takes over. Beyond x*, a cusp in cac is traced down to T_C* = 25 mK at x = 0.87, locating the critical concentration between x = 0.87 and 0.90. The quantum criticality of this region is recognized by the -log(T/T_0) dependence of C_m/T, which transforms into a T^-q (~0.5) one at x = 0.87. At high temperature, this system shows the onset of valence instability revealed by a deviation from Vegard's law (at x_V~0.75) and increasing hybridization effects on high temperature \chi_dc and \rho. Coincidentally, a Fermi liquid contribution to the specific heat arises from the MV component, which becomes dominant at the CeRh limit. In contrast to antiferromagnetic systems, no C_m/T flattening is observed for x > x_cr rather the mentioned power law divergence, which coincides with a change of sign of \beta. The coexistence of F and MV components and the sudden changes in the T dependencies are discussed in the context of randomly distributed magnetic and Kondo couplings.Comment: 11 pages, 11 figure

    Viral expression and molecular profiling in liver tissue versus microdissected hepatocytes in hepatitis B virus - associated hepatocellular carcinoma.

    Get PDF
    Background: The molecular mechanisms whereby hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) remain elusive. We used genomic and molecular techniques to investigate host-virus interactions by studying multiple areas of the same liver from patients with HCC. Methods: We compared the gene signature of whole liver tissue (WLT) versus laser capture-microdissected (LCM) hepatocytes along with the intrahepatic expression of HBV. Gene expression profiling was performed on up to 17 WLT specimens obtained at various distances from the tumor center from individual livers of 11 patients with HCC and on selected LCM samples. HBV markers in liver and serum were determined by real-time polymerase chain reaction (PCR)and confocal immunofluorescence. Results: Analysis of 5 areas of the liver showed a sharp change in gene expression between the immediate perilesional area and tumor periphery that correlated with a significant decrease in the intrahepatic expression of HB surface antigen (HBsAg). The tumor was characterized by a large preponderance of down-regulated genes, mostly involved in the metabolism of lipids and fatty acids, glucose, amino acids and drugs, with down-regulation of pathways involved in the activation of PXR/RXR and PPARα/RXRα nuclear receptors, comprising PGC-1α and FOXO1, two key regulators critically involved not only in the metabolic functions of the liver but also in the life cycle of HBV, acting as essential transcription factors for viral gene expression. These findings were confirmed by gene expression of microdissected hepatocytes. Moreover, LCM of malignant hepatocytes also revealed up-regulation of unique genes associated with cancer and signaling Pathways, including two novel HCC-associated cancer testis antigen genes, NUF2 and TTK. Conclusions: Integrated gene expression profiling of whole liver tissue with that of microdissected hepatocytes demonstrated that HBV-associated HCC is characterized by a metabolism switch-off and by a significant reduction in HBsAg. LCM proved to be a critical tool to validate gene signatures associated with HCC and to identify genes that may play a role in hepatocarcinogenesis, opening new perspectives for the discovery of novel diagnostic markers and therapeutic targets

    Speckle noise and dynamic range in coronagraphic images

    Full text link
    This paper is concerned with the theoretical properties of high contrast coronagraphic images in the context of exoplanet searches. We derive and analyze the statistical properties of the residual starlight in coronagraphic images, and describe the effect of a coronagraph on the speckle and photon noise. Current observations with coronagraphic instruments have shown that the main limitations to high contrast imaging are due to residual quasi-static speckles. We tackle this problem in this paper, and propose a generalization of our statistical model to include the description of static, quasi-static and fast residual atmospheric speckles. The results provide insight into the effects on the dynamic range of wavefront control, coronagraphy, active speckle reduction, and differential speckle calibration. The study is focused on ground-based imaging with extreme adaptive optics, but the approach is general enough to be applicable to space, with different parameters.Comment: 31 pages, 18 figure

    Coronagraphic mask design using Hermite functions

    Get PDF
    We introduce a stellar coronagraph that uses a coronagraphic mask described by a Hermite function or a combination of them. It allows the detection of exoplanets providing both deep starlight extinction and high angular resolution. This angular resolution depends on the order of the Hermite function used. An analysis of the coronagraph performance is carried out for different even order masks. Numerical simulations of the ideal case, with no phase errors and perfect telescope pointing, show that on-axis starlight is reduced to very low intensity levels corresponding to a gain of at least 25 magnitudes (10−10 light intensity reduction). The coronagraphic throughput depends on the Hermite function or combination selected. The proposed mask series presents the same advantages of band limited masks along with the benefit of reducing the light diffracted by the mask border thanks to its particular shape. Nevertheless, for direct detection of Earth-like exoplanets it requires the use of adaptive optics facilities for compensating the perturbations introduced by the atmosphere and by the optical system

    Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N2H7+

    Get PDF
    The microscopic origin and quantum effects of the low barrier hydrogen bond (LBHB) in the proton-bound ammonia dimer cation N2H7+ were studied by means of ab initio and density-functional theory(DFT) methods. These results were analyzed in the framework of vibronic theory and compared to those obtained for the Zundel cation H5O2+. All geometry optimizations carried out using wavefunction-based methods [Hartree–Fock, second and fourth order Möller–Plesset theory (MP2 and MP4), and quadratic configuration interaction with singles and doubles excitations (QCISD)] lead to an asymmetrical H3N–H+⋯NH3 conformation (C3v symmetry) with a small energy barrier (1.26kcal/mol in MP4 and QCISD calculations) between both equivalent minima. The value of this barrier is underestimated in DFT calculations particularly at the local density approximation level where geometry optimization leads to a symmetric H3N⋯H+⋯NH3 structure (D3d point group). The instability of the symmetric D3d structure is shown to originate from the pseudo-Jahn–Teller mixing of the electronic A1g1ground state with five low lying excited states of A2u symmetry through the asymmetric α2u vibrational mode. A molecular orbital study of the pseudo-Jahn–Teller coupling has allowed us to discuss the origin of the proton displacement and the LBHB formation in terms of the polarization of the NH3 molecules and the transfer of electronic charge between the proton and the NH3 units (rebonding). The parallel study of the H5O2+ cation, which presents a symmetric single-well structure, allows us to analyze why these similar molecules behave differently with respect to proton transfer. From the vibronic analysis, a unified view of the Rudle–Pimentel three-center four-electron and charge transfer models of LBHBs is given. Finally, the large difference in the N–N distance in the D3d and C3v configurations of N2H7+ indicates a large anharmonic coupling between α2u-α1g modes along the proton-transfer dynamics. This issue was explored by solving numerically the vibrational Schrödinger equation corresponding to the bidimensional E[Q(α2u),Q(α1g)] energy surface calculated at the MP4/6-311++G** level of theory
    • …
    corecore