1,625 research outputs found

    Impact of Weak Lensing Mass Calibration on eROSITA Galaxy Cluster Cosmological Studies -- a Forecast

    Full text link
    We forecast the impact of weak lensing (WL) cluster mass calibration on the cosmological constraints from the X-ray selected galaxy cluster counts in the upcoming eROSITA survey. We employ a prototype cosmology pipeline to analyze mock cluster catalogs. Each cluster is sampled from the mass function in a fiducial cosmology and given an eROSITA count rate and redshift, where count rates are modeled using the eROSITA effective area, a typical exposure time, Poisson noise and the scatter and form of the observed X-ray luminosity-- and temperature--mass--redshift relations. A subset of clusters have mock shear profiles to mimic either those from DES and HSC or from the future Euclid and LSST surveys. Using a count rate selection, we generate a baseline cluster cosmology catalog that contains 13k clusters over 14,892~deg2^2 of extragalactic sky. Low mass groups are excluded using raised count rate thresholds at low redshift. Forecast parameter uncertainties for ΩM\Omega_\mathrm{M}, σ8\sigma_8 and ww are 0.023 (0.016; 0.014), 0.017 (0.012; 0.010), and 0.085 (0.074; 0.071), respectively, when adopting DES+HSC WL (Euclid; LSST), while marginalizing over the sum of the neutrino masses. A degeneracy between the distance--redshift relation and the parameters of the observable--mass scaling relation limits the impact of the WL calibration on the ww constraints, but with BAO measurements from DESI an improved determination of ww to 0.043 becomes possible. With Planck CMB priors, ΩM\Omega_\text{M} (σ8\sigma_8) can be determined to 0.0050.005 (0.0070.007), and the summed neutrino mass limited to ∑mÎœ<0.241\sum m_\nu < 0.241 eV (at 95\%). If systematics on the group mass scale can be controlled, the eROSITA group and cluster sample with 43k objects and LSST WL could constrain ΩM\Omega_\mathrm{M} and σ8\sigma_8 to 0.007 and ww to 0.050.Comment: 28 pages, 13 figur

    Statistical characterization of the forces on spheres in an upflow of air

    Get PDF
    The dynamics of a sphere fluidized in a nearly-levitating upflow of air were previously found to be identical to those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin equation [Ojha {\it et al.}, Nature {\bf 427}, 521 (2004)]. The random forcing, the drag, and the trapping potential represent different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential between two spheres in an upflow of air.Comment: 7 pages, experimen

    Diffusion in pores and its dependence on boundary conditions

    Full text link
    We study the influence of the boundary conditions at the solid liquid interface on diffusion in a confined fluid. Using an hydrodynamic approach, we compute numerical estimates for the diffusion of a particle confined between two planes. Partial slip is shown to significantly influence the diffusion coefficient near a wall. Analytical expressions are derived in the low and high confinement limits, and are in good agreement with numerical results. These calculations indicate that diffusion of tagged particles could be used as a sensitive probe of the solid-liquid boundary conditions.Comment: soumis \`a J.Phys. Cond. Matt. special issue on "Diffusion in Liquids, Polymers, Biophysics and Chemical Dynamics

    Possibility to study eta-mesic nuclei and photoproduction of slow eta-mesons at the GRAAL facility

    Full text link
    A new experiment is proposed with the aim to study eta-mesic nuclei and low-energy interactions of eta with nuclei. Two decay modes of eta produced by a photon beam inside a nucleus will be observed, namely a collisional decay \eta N \to \pi N inside the nucleus and the radiative decay \eta \to \gamma \gamma outside. In addition, a collisional decay of stopped S_{11}(1535) resonance inside the nucleus, S_{11}(1535) N \to N N, will be studied. The experiment can be performed using the tagged photon beam at ESRF with the end-point energy 1000 MeV and the GRAAL detector which includes a high-resolution BGO calorimeter and a large acceptance lead-scintillator time-of-flight wall. Some results of simulation and estimates of yields are given.Comment: 20 pages, 19 figure

    The Diffusion of Humans and Cultures in the Course of the Spread of Farming

    Full text link
    The most profound change in the relationship between humans and their environment was the introduction of agriculture and pastoralism. [....] For an understanding of the expansion process, it appears appropriate to apply a diffusive model. Broadly, these numerical modeling approaches can be catego- rized in correlative, continuous and discrete. Common to all approaches is the comparison to collections of radiocarbon data that show the apparent wave of advance of the transition to farming. However, these data sets differ in entry density and data quality. Often they disregard local and regional specifics and research gaps, or dating uncertainties. Thus, most of these data bases may only be used on a very general, broad scale. One of the pitfalls of using irregularly spaced or irregularly documented radiocarbon data becomes evident from the map generated by Fort (this volume, Chapter 16): while the general east-west and south-north trends become evident, some areas appear as having undergone anomalously early transitions to farming. This may be due to faulty entries into the data base or regional problems with radiocarbon dating, if not unnoticed or undocumented laboratory mistakes.Comment: 20 pages, 5 figures, submitted to Diffusive Spreading in Nature, Technology and Society, edited by Armin Bunde, J\"urgen Caro, J\"org K\"arger, Gero Vogl, Chapter 1

    Equilibrium Configurations of Strongly Magnetized Neutron Stars with Realistic Equations of State

    Full text link
    We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy (Douchin et al.), FPS (Pandharipande et al.), Shen (Shen et al.), and LS (Lattimer & Swesty). Employing the Tomimura-Eriguchi scheme to construct the equilibrium configurations. we study the basic physical properties of the sequences in the framework of Newton gravity. In addition we newly take into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g., structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyze this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than 1015gcm−310^{15}\rm{g} \rm{cm}^{-3}. The maximum baryon mass of the magnetized stars with axis ratio q∌0.7q\sim 0.7 increases about up to twenty percents for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly-born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.Comment: submitted to MNRA

    DADA: data assimilation for the detection and attribution of weather and climate-related events

    Get PDF
    A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures

    The supersymmetric technique for random-matrix ensembles with zero eigenvalues

    Full text link
    The supersymmetric technique is applied to computing the average spectral density near zero energy in the large-N limit of the random-matrix ensembles with zero eigenvalues: B, DIII-odd, and the chiral ensembles (classes AIII, BDI, and CII). The supersymmetric calculations reproduce the existing results obtained by other methods. The effect of zero eigenvalues may be interpreted as reducing the symmetry of the zero-energy supersymmetric action by breaking a certain abelian symmetry.Comment: 22 pages, introduction modified, one reference adde
    • 

    corecore