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Statistical Characterization of the Forces on Spheres in an Uptlow of Air

Abstract

The dynamics of a sphere fluidized in a nearly levitating upflow of air were previously found to be identical to
those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin equation [Ojha
et al., Nature (London) 427, 521 (2004)]. The random forcing, the drag, and the trapping potential represent
different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental
conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow
speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential
between two spheres in an upflow of air.
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Statistical characterization of the forces on spheres in an upflow of air
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The dynamics of a sphere fluidized in a nearly levitating upflow of air were previously found to be identical
to those of a Brownian particle in a two-dimensional harmonic trap, consistent with a Langevin e|Qgttian
et al, Nature(London 427, 521(2004]. The random forcing, the drag, and the trapping potential represent
different aspects of the interaction of the sphere with the air flow. In this paper we vary the experimental
conditions for a single sphere, and report on how the force terms in the Langevin equation scale with air flow
speed, sphere radius, sphere density, and system size. We also report on the effective interaction potential
between two spheres in an upflow of air.
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I. INTRODUCTION identical to that of a Brownian particle in a two-dimensional

One of the great challenges in physics today is to under@rmonic trap. For such a system the thermal analogy is
stand the dynamics of driven nonequilibrium systefy ~ Perfect. .
This is particularly important in soft-matter physics, because [N this paper we exploit the thermal analogy to deduce
the materials often have a delicate mesoscopic structure thepiantitative information about interactions in gas-fluidized
is easily perturbed far from equilibrium. There, an under-systems. Now that the tools of statistical mechanics are at
standing of the microscopic dynamics is crucial for a funda-our disposal, we may deduce the salient features of the forces
mental understanding of macroscopic behavior. Granular macting on a sphere from measurements of position and speed
terials are an excellent example of this poj@t3]. When  statistics. In addition to providing additional data and a more
subjected to strong driving forces, granular systems exhibidetailed description than in RéfL5], this follows through on
gas- or liquidlike behavior at the macroscopic scale andur original motivation to study the fundamental forces at
strong velocity fluctuations and collisions at the grain scaleplay in gas-fluidized beds. Our statistical mechanical ap-
The microscopic fluctuations are created by the act of flow{roach is completely orthogonal to traditional wind-tunnel
ing, and, at the same time, are responsible for the dissipatiomeasurementgl7], and provides a clean decomposition of
that limits the rate of flow. The difficulty of treating the gas-mediated interactions into three distinct contributions.
fluctuations is one reason why granular mechanics remains\&/e begin with a discussion of statistical mechanics and the
forefront research topic, and why engineering systems arkangevin equation of motion, both to review prior findings
alarmingly prone to failure. and to define notation for use here. After describing our ex-

One way to characterize the microscopic dynamics in @erimental apparatus, we then present data pertaining to the
granular gas or liquid is by the distribution of speed fluctua-effective temperature and its scaling with system parameters,
tions. This has a long history, and is associated with attemptll for a one-sphere system. Lastly, we turn to interactions of
to develop a system of partial differential equations describa sphere with both the container boundary as well as with a
ing granular hydrodynamicgt—9]. The average kinetic en- second sphere.
ergy associated with speed fluctuations has come to be
known as the “granular temperature,” in loose analogy with
kinetic theory of gases. An interesting line of research has
been to explore the extent to which this analogy holds, i.e., The particles of interest are spheres of massliameter
the extent to which statistical mechanical concepts for trud=2R,, and moment of inertid. They roll without sliding,
thermal systems can be used to describe granular fluctuge their kinetic energy iK:%(mH/Rdz)uz. In order to char-
tions. For dilute or two-dimensional systems it is relatively acterize the motion entirely in terms of position, velocity,
straightforward to track grain motion by video techniques.and acceleration vectofs(t),v(t),a(t)}, we define an effec-
Experimentalists have thus studied whether or not speed digive inertial mass and density as,=m+I/R? and p,
tributions are Gaussian, and whether or not equipartion ism./[(47/3)R ], respectively. As shown in Ref15], the

obeyed[10-14. Recently we did the same for a very dilute gquation of translational motion of the rolling gas-fluidized
system, consisting of only a single grain, driven by a steadygppere is

upflow of gag[15]. Part of our motivation was to isolate the :

role of gas-mediated interactions from collisional and cohe- s

sive interactions in bulk gas-fluidized beds, which is a topic mea(t) == V V(r) - mef_m P(t-tvt)dt +F(0). (1)

of long-standing importancgl6]. By measuring the time-

dependent dynamics, as well as the usual speed distributiofihis is recognized as Newton’s second law, where the right
and by performing auxiliary mechanical measurements, wdand side is the sum of forces acting on the sphere. The first
were able to demonstrate that the motion of the sphere iterm is the gradient of an effective potential; for a harmonic

II. LANGEVIN EQUATION
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spring this force is Kr(t). The second term represents the  TABLE I. Inertial mass density and diameter for the various
drag force, wherd'(t) is the memory kernel. In Ref15] it ~ spheres. The ping-pong and king-pong balls are both hollow plastic

was shown to be exponential, spheres, with a 0.4-mm shell thickness; all others are solid.
L'(t) =Toy, exp= ¥ol). (2)  Sphere pe (g/cn?) D (cm)

Thus 1/y, is a time scale representing the duration of theking-pong 0.122 4.41

memory; 11, is a time scale such that the drag force has ing-pong 0.146 380

typical value of -m,I'yv. The final term in Eq(1) is a time-
varying random forcé,(t). As shown in Ref[15], the com-
ponents ofF,(t) have Gaussian distributions and exponential
temporal autocorrelations. In particular, it was demonstrated¥'on
that the random and drag forces are related according to the
fluctuation-dissipation relatio(FDR) [18]:

Wood 0.987 1.27-3.70
Polypropylene 1.14 0.56-2.54
1.56 0.63-2.54

ing pixel and the segment length. Since black pixels have
(F, (") -F,(t)) =2mKkTT(t - t'), 3 zero intensity, the sphere location is then computed as the

. . center of brightness of the entire thresholded image.
wherekT=mg(v?)/2 is the effective(granulaj temperature. The sphere velocity and acceleration are found by post-

Note that the two momentum degrees of freedom each havg,cessing position vs time data. Specifically, we fit a third-
kT/2 of energy, consistent with the equipartition theorem.orqer polynomial to data within a window of +4 points.
Satisfaction of the FDR means that the particle dynamics argassjan weighting that is nearly zero at the edges is used to
identical to those of a thermal Brownian particle; therefore.qngyre continuity of the derivatives. This process also refines
Eq. (1) is truly the Langevin equation. Even though the roll- e nosition measurement. In the end we achieve a resolution

ing sphere is a driven far-from-equilibrium system, statisticalyf +0 o5 mm, which corresponds to about 0.1% of the sphere
mechanics holds unchanged except that the value of the efigmeter and about 0.08 pixels.

fective temperature is not the thermodynamic temperature of e specific spheres studied are listed in Table I. For

the apparatus. each, the allowed air speeds are bounded by 200 and
500 cm/s depending on the sphere. The range is limited be-
cause at lower air speeds, the sphere occasionally rolls along
lIl. EXPERIMENTAL DETAILS its seam or along the weave of the wire mesh. At higher air

Our methods are identical to those first reported in RefSPeeds, the sphere occasionally scoots or loses contact with
[15]. The fluidization apparatus is built around a the sieve.In all cases, the air speed is less than the terminal

12-in.-diameter brass sieve, with 3g@ wire mesh spacing falling speed of the sphere. The Reynolds number based on
and with 4-in.-high side wall. The full sieve is usually used, SPhere size is of order 10Thus the sphere sheds turbulent
but occasionally a cylindrical insert is placed concentricallyWakes, and this gives rise to the stochastic motion.

in order to vary the radiuR..; and/or the wall height. The

wire mesh is flat and level, and is very fine compared to the IV. EFFECTIVE TEMPERATURE

sphere size. The sieve is mounted atop a 28(RO in. In this section we begin reporting on how the various

X 4 ft tall windbox consisting of two nearly cubical cham- ms in the Lanaevin equation scale with svstem param-
bers separated by a perforated metal sheet. In some of tﬁ - -ang guat yS P
eters. The first is the effective temperature, given by the

runs, a 1/2-in.-thick foam air filter is sandwiched between 8 ean-sauared speed = ?)/2. Data for the mean-
second perforated metal sheet. Air from a blower is intro- q P =Melv '

duced to the lower chamber through a flexible cloth sleeveSduared sphere speed are shown as a function of air speed

The flow rate is controlled by a variac. The geometry of the!" Fig. _1 for va_rious types of sph.ere. In all cases, the date} are
windbox is designed to achieve a uniform upward air ﬂowmgonsgtent with the simplest dimensionally correct scaling,
across the whole area of the sieve. This is verified and monir ) ~ " Rather, the mean-squared speed appears to scale as
tored with a hot-wire anemometer. the cube of the air speed. Thu¥ (v?) has units of speed and
The sphere position is measured from digital images acPresumably depends on physical characteristics of the
quired at a rate of 120 frames per second. The camera hassghere, the fluidizing air, and gravity.
resolution of 640x 480 pixels, and is mounted about 1 m  To uncover the full scaling we first proceed by dimen-
directly above the sieve via a scaffolding attached to thesional analysis. Assuming théat?) decreases with increasing
windbox. Two 18-in. fluorescent lights are mounted just be-sphere density, the combinatiépy;/ po)?u®/(v?) is the im-
low the camera, such that the illumination is uniform and theportant characteristic speed, where the exporeentf the
thresholded image of the sphere appears as a white disk indensity ratio is to be determined. We can conceive of only
black background. In order to achieve very long run timesthree possibilities for the origin of this characteristic speed:
using an ordinary personal computer, we developed custorihe speed of sound, 34 000 cm/s; a speed set by gravity and
video compression and particle tracking algorithms that perthe sphere size/gD; and a speed set by air viscosity and the
mit real-time analysis without the need for writing prohibi- sphere sizeyp/D. To investigate, we compare these possibili-
tively large data sets to hard drive. At heart is a run-lengthties with data for the characteristic speed vs sphere size in
encoding scheme: for each row, it is enough to note the starfig. 2, for several integer values af We find that the best
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FIG. 1. (Color onlin@ The mean-squared speed of a rolling u (cm/s)
sphere vs the speed of the upflow of air, for several types of sphere
as labeled. The solid lines are a best fit to cubic beha{iéy FIG. 3. (Color onlineg Amplitude I'y and decay ratey, of the

~us. The data are not consistent with the dimensionally simplermemory kernel,I'(t)=Tyy, exp(=7,t) as a function of air flow
scaling(v?) ~ u?, shown as a dashed line. All data are for the full speed, for two different spheres as labeled; these quantities are ren-
12-in. sieve, except the small right triangles for ping-pong balls indered dimensionless by appropriate factors of sphere diameter,
cells of smaller radii. gravitational acceleration, and air flow speed according to expecta-
tion. The dashed lines represent average values, 0.17 in the top plot

data collapse is attained far=2. For that case the value and 2"d 0-11 in the bottom plot.

functional form of the characteristic speed are both consis- . _ _
tent with VgD. Adjusting the numerical prefactor to best Speed:Po,=(peD"T ov)v, using the notation of Sec. II. The
match all the data, we thus find that the mean-squared spedermer isP;,=(p.D35v?) y,, Where the term in parentheses is

of a sphere is given by the kinetic energy change due to the shedding of a wake and
2 3 v,=U/D is the rate at which wakes are shed. Assuming that
W% = o_7<@) u_ (4) the wake size scales with sphere size, momentum conserva-
pPe / NgD tion givesp.dv =p,i;U. The numerical prefactor is nontrivial,

This observed scaling of the mean-squared sphere spees' ce it must depend on the ratio of wake to sphere size and

. . . . : . so on the fraction of momentum in the plane of the sieve,
is consistent with a simple model of the stochastic motion o . S .
. . . . . -transverse to the average air flow direction. Combining all
the sphere being driven by turbulence in the air. The idea i . .
ese elements, the balance of power input with power out-

to balance the rat®;, at which kinetic energy is transferred : e )
from the air to the énphere with the rag, a?zvhich energy PUL iS pyir“U%/D=p(v?)To. This is |d_ent|cal o our data on
is dissipated by drag. Ignoring numerical factors, the latter id"€ Méan-squared speed, &), provided that the drag am-

the characteristic drag force times the characteristic sphefditude scales a¥,=vg/D and that the memory decay rate
scales agy,>«u/D. Next we demonstrate that these provisos

both hold true.

10° F34000emfs T T e T oA N T
ST N !l V. DRAG AND RANDOM FORCES
E : ywolo ‘ S ] i
& WE T P 1 Recall from Eqs(1)—<(3) in Sec. Il that both the drag and
B el & WS < oa=2_ _ ] random forces are specified by an exponential memory ker-
i g XY X AT - —ee— ] nel, I'(t) =Ty y, exp(—=v,t). In Ref.[15] we found consistent
L 0F=5 " - 3 values forl'y, and vy, from two different methods. The first
g.; 13_\ - 3 was from the velocity autocorrelation function using the
o £ WD T a3 Langevin equation. The second was from the amplitude and
0.1Ff T o Ty—_ E phase of the average response to a small sinusoidal rocking
v— Y E
: "A' ‘ XI Y of the entire apparatus at various frequencies. Here we em-
0o 1 10 ploy the former method for both the ping-pong and king-
D (cm) pong balls, as a function of air speed. The results are shown

in Fig. 3, made dimensionless according to the expectations

FIG. 2. (Color onling Scaling of the characteristics speeds with of Sec. IV. Specifically, the top plot demonstrates that the
the sphere diametdd for several different spheres as labeled. The drag amplitude behaves as expected:

mean-squared speégP) of the sphere is proportional to the cube of
the air speedy; therefore, the ratio of these quantities is a charac- r,= 017\*"%- (5)
teristic speed that reflects both the sphere density and the dissipa-

tion mechanism. The data collapse is best whdf{v?) is multi- ~ The importance ofg suggests that rolling friction is the
plied by the square of the density ratio. Then the value and form oflominant source of drag, as opposed to shear or compression
the characteristic speed are both consistent wgb, indicating ~ of the air. Perhaps we may identify the numerical prefactor
that rolling friction is the dominant dissipation mechanism. of g as a coefficient of frictionl’,=+xg/D with £=0.03. It
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would be interesting to investigate hguchanges with mesh T T T T N
size and ball roughness. The bottom plot of Fig. 3 demon 30 Bl "\
strates that the memory decay rate also behaves as expect A7) I\

v, =0.11u/D. (6) 25

This is consistent with earlier visualization and pressure fluc
tuation studies, which found that the vortex shedding fre- o
quency is 0.16/D for Reynolds numbers in the range Z
103-1CF [19,20. Here, Eq.(6) means that a new wake is S " T—
shed every time the air flows a distance of about nine spher[: 15 |
diameters; equivalently, the Strouhal number is=$tD/u
=0.11.

We emphasize that while the results of E(S. and (6) 10 4
directly specify the drag force, they also specify the randorr
force via the fluctuation-dissipation relation E§). The ran-
dom driving and the drag forces are different aspects of thi
same physical interaction between the sphere and the turb

ping pong

RCELL: 9-15¢m

u: 220-360cm/s

V(r)/k

u: 450-520cm/s

7 u: 380-520cm/s

r=(0.20£0.02)R

lence it generates in the air. To recap, the random force he | | PoE— cEe }
Gaussian components and an exponential temporal autocc w:240-320emfs
relation, 0 0.2 0.4 0.6 0.8 1
: R,
(Fe(t) - Fr(1)) = 2mek Tl o 0 Xl yo(t — )], ) CEHL
wherekT=m(v?)/2 is specified by Eq(4). FIG. 4. (Color onling Interaction potential between a variety of

spheres and the walls of the container vs distance from the center of
the cell scaled by cell radius. The top data set is taken at constant air
flow speed, while all others are taken at constéuit) cell size. The
dashed curves represent a harmonic potentM(r)/kT
The potentia\(r) is the only part of the Langevin equa- =30(r/R.)® The solid curves represent an empirical average of all

tion not yet discussed. This can be deduced from the radidhe data,V(r)/kT=30(r/Reen)?/[1+2(r/Ree)®]. An arbitrary con-
position probability functionP(r) using principles of statis- stant offset was added in order to separate the different data sets.
tical mechanics; namely, the probability to find the sphere in

a thin ring of radiug is proportional to the ring radius times becomes attractive very close to the walls, strong enough to

VI. BALL-WALL INTERACTION

a Boltzmann factor, occasionally trap an unwary sphere that wanders too far from
home.
P(r) o« r exf— V(r)/kT], ®) The geometric scaling of the potential with cell size, in-

wherekT is the effective temperature discussed in Sec. V. Independent of air flow speed, leads us to believe that the
Ref. [15], the sphere was found most frequently near thePrlgin of the behavior lies in the interaction of the shed vor-

center of the cell such that theandy distributions were tices with the boundary of the cell. This is bolstered by other
nearly Gaussian andP(r)=(2r/(r®)exp(-r2/(r?)). This observations as well. First, even very slight imperfections in
means that the interaction potential is nearly harmonicthe circularity of the cell can break the radial symmetry of

V(r)=Kr2/2. The value of(r? gave a spring constant that the position distributions. Second, placing a hand or other
was verified by an auxiliary mechanical tilting measurement°PJ€ct downstream from the sphere affects its position distri-

Here, we examine the shape of the potential more closel)punon as well. Evidently, the vortex street is connected to the

and we explore its behavior as a function of system paramspherf3 such that fofce can be exerted on the sphere via per-
eters. turbation to the vortices.

Radial position probability data for all runs are converted One possible picture for how the vortex street senses the

to the interaction potential via Eqg8), and displayed alto- wall is that the transverse extent of the vortices grows lin-
gether in Fig. 4. The potential is Ieft'in units BT and the early with distance downstream. Then the sphere could sense

radial position is scaled by the cell radi@s for clarity. its position from the height at which the expanding vortices

PR .. _hit the boundary. See Figs. 31, 55, 56, 172, and 173 of Ref.
Remarkably, the potential is given by the same empmciF' ' . . .
form independent of sphere size, cell radius, and air flo 21] for_photographs of the vortices behind various objects at
approximately the same Reynolds number as here. Another

speed: possible picture is that the background flow, while homoge-
30(r/Reen)? neous near the sieve, develops large-scale structure down-
V(r)/kT = 1+(r/Reey)®’ 9 stream that grows from the edge inward. Then the sphere

could sense its position from the height at which its vortices
In particular, the rms radial position of a sphere is always setnerge with the dome of turbulent structure above. See Figs.
by the cell size\,@:(o.ZOio.Oche”. The harmonic form 152 and 153 of Ref[21] for photographs of the isotropic
of the potential also softens away from the center. It actuallyturbulence behind a grid and its evolution downstream.

016313-4
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We performed a few tests in an attempt to clarify the 02 ——m——"FF— 77—
physical pictures. First, we increased and decreased the we o10 kb . o soh ]
height to a considerable extent. This had no influence onth | A e fghffs ]
sphere position statistics, which seems to rule out the 008  f .4 Ri ]
growing-vortex scenario. Our second test was to stretch - i
fine netting across the top of the sieve. We hoped that thi& S 1 ]
would affect the rate of vortex shedding or the way the vor- 0.04 [ 5 LAk ]
tex street is connected back to the sphere. However, it had r L ]
influence on the sphere position statistics either. Thus, w
must leave the origin of the geometric nature of the sphere
wall interaction potential as something of a mystery. Flow
visualization may be helpful. We close by emphasizing that
whatever its origin, the sphere is repelled by the cell wall in
a way that, remarkably, can be described by a potential er
ergy and a corresponding conservative force.

006 F Aj ok ]

0.02 [§ ]

P(r)

VII. BALL-BALL INTERACTION

In the remainder of this paper we report on the air-
mediated interaction between two spheres rolling in the sam
nearly levitating upflow of air. Throughout, we set the air
flow to 280 cm/s, before adding spheres. As above, we sha 4
see that this may be studied using position probability dat: r (cm)
and statistical mechanics. And just as for the ball-wall force,
we shall see that the ball-ball force is repulsive. Naively one FIG. 5. (Color onling Speed and radial position probability
might expect a Bernoulli-like attraction, just as when air isfunctions for one and tvx_/o s_pht_ares rolling in th(_e same upflow of air.
blown between two objects. However it is immediately 0b_Note that the speed distributions are Gaussian |_n both' _cases, as
vious from visual inspection that here the two spheres repeﬁhown by the dashed curves. By contrast, the radial posmon func-
only rarely do they collide, with physical contact between °N becomes non-Gaussian when a second sphere is added to the
their surfaces; they never stick; they accelerate apart aftéyStem:
close approach. - )

To begin we display speed and radial position probabili-velocities of the two spheres. To check this, we compute
ties in Fig. 5. The light curves are for a single ball in thete_mporal velocw_correlanon fun_ctlons and_ plot the results in
same air flow, for comparison. As above and in R&§], the _F|g. 6. The_velocny autocor_relanon for a single sphere alone
x andy components of velocity and position are all Gaussianin the cell is shown by a light curve, for comparison. The
When a second sphere is added, we verify that the velocityebc'ty .autocorrelatlon for_ each sphere, when two are
and position distributions remain radially symmetric andPresent, is shown by a heavier curve. It decays over the same
identical for each sphere. The top plot of Fig. 5 demonstratedme scale as the one-sphere autocorrelation, though the os-
that the average speed distribution of the two spheres rillations are less pronounced. The cross correlation between
mains Gaussian. Thus the mean-squared speed can be useth® velocmes of the two spheres is shown by a dashed curve.
define an effective temperature, as before for a single spherl.to0 oscillates and decays over the same time scale as the
However, this temperature increases when a second sphereddtocorrelations. But, crucially for us, it vanishes 0.
added, even though the flux of air remains unchanged. Evi-

dently Eq.(4) holds in detail only for a one-sphere system. @prewryprr v e rw v I eIV
The reason may be that, due to a decrease in free area, the < 60 f autocorrelation, two spheres ]
flow speed around the two spheres is greater than when on<> N\ cross correlation, two spheres

autocorrelation, one sphere

one is present. It may also be that the process of energs 40 [
injection via vortex shedding is altered. The bottom plot in A i
Fig. 5 demonstrates that the radial position probability be- Eﬁ 5
comes non-Gaussian when a second sphere is added. Eeg 0 =
sphere spends less time in the very center of the cell, due 1 5~ 20 H
mutual repulsion, with the rms radial position increasing v [
from 2.8 to 4.8 cm when a second sphere is added. As be  -40 Ll L b L
fore, the spheres still are repelled from the cell wall as 0 T (s)

though in a harmonic trap.

For statistical mechanics to be useful for studying the FIG. 6. (Color onling Velocity correlations between spheries
sphere-sphere repulsion, it is required that the velocity comand j, for one- and two-sphere systems as labeled. Note that the
ponents be Gaussian as demonstrated above. It is also rgess correlation vanishes a0, which is required if statistical
quired that there be no correlation between the instantaneousechanics is to be invoked.
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Thus the instantaneous equal-time velocities of the twc
spheres are indeed uncorrelated as required.
With the above preliminaries established, we may now

PHYSICAL REVIEW E 71, 016313(2009

S5

0F

g V @AT 3020

exploit the principles of statistical mechanics in order to de£ |
duce the sphere-sphere interaction potentiglp), wherep = 5|
is the distance between the centers of the two spheres. Tk" |
idea is to compute the sphere-sphere separation probabili  -10 |
in terms of both the overall harmonic confining potential and i

the unknownVg{p). This is accomplished by summing the :; e :.T':']"T':'T:O
Boltzmann factors for all the ways of arranging the sphere:
with the desired separation: 2 10 3 ¢b Tilfing Analysis
% 51 Stat Mech Analysis
1
P(p) scjdx dy d9exp{—EK[x2+y2+(x+pcos0)2 ;\ . I
= 2
LL?) |
+(y+ p sin O)2)/KT |exp - Vsd p)/KT] (10) g
05
p (cm)
1
o exp{— <ZKp2+V34p))/kT:|. (11) FIG. 7. (Color onling Interaction between two spheres as a

function of their separatiop. Using Eq.(11), the potentiaV¢{p) is
inferred from the separation probabili(p); these functions are
One may differentiate this expression to show that the peakoth shown in the upper plot. Systematic uncertainty/igp) is
in P(p) is where €V,/dp=Kp/2, which is a statement of indicated by dotted curves; it is due to statistical uncertainty in the
force balance when each spher@i® from the center of the value of K. The repulsive force is shown in the bottom plot, as
cell. Since the spring constait is known from the one- obtained both fromVsdp) and from an auxiliary mechanical
sphere experiment, and since the temperakilrés known  Mmeasurement.
from the mean-squared speeds, the functi®@s andV.{p)
may be deduced one from the other. statement of force balance at the peaksp@f,y) gives the
The separation probabilitf(p) is readily found from the  sphere-sphere repulsive force as
video data for the position of each sphere vs time. Results
are displayed by a dashed curve on the right axis of the upper
plot in Fig. 7. The probability rises abruptly from zero at a
separation equal to the sphere diameter. It reaches a peak
nearp=7 cm, and then gradually decays again toward zero.
The sphere-sphere potentidl{p) can then be obtained from
P(p) using Eq.(11). Results are shown by a solid curve on In practice, to achieve a wider range in separations, we tilt
the left axis of the upper plot in Fig. 7. The precipitous dropthe apparatus by 0.013 rad and use cells of three different
of Vq{p) near contact indicates a hard-core repulsion. Thaliameters: 20, 25, and 30 cm. Observations then give the
more gradual drop at larger separations indicates a softéepulsive force at three different separations as shown in the
repulsion. lower plot of Fig. 7. Evidently the agreement with the results
The actual force of repulsion may be found by differenti- from statistical mechanics is very good. This gives confi-
ating, Fs{p)=—dV,J/dp. Results are shown by the solid dence in the use of statistical mechanics to deduce the full
curve in the lower plot of Fig. 7. There is a hard-core repul-form of the repulsive sphere-sphere interaction.
sion, followed by a nearly constant-force repulsion when the
sphere centers are separated by more than two diameters.
Expressing the interaction in terms of a force allows us to
perform a check using an auxiliary mechanical measurement
of the response to tilting the entire apparatus by a fixed angle We have exploited the thermal-like behavior of a single
6 away from horizontal. This causes a constant component ajas-fluidized sphere to deduce the nature of the forces dic-
gravity, mgsin 6, within the plane and breaks the radial sym- tating its motion. All these forces are mediated by turbulence
metry; note that heren is the true mass, not the effective in the gas, but can be decomposed into distinct contributions.
inertial mass. Then we measure the probabiliix,y) for ~ Due to randomness in the shedding of turbulent wakes, there
finding a sphere at a given position, where the origin of thes a rapidly varying random force specified by E¢9—7).
coordinate system is at the center of the cell and where gra\By virtue of the fluctuation-dissipation relation and E¢b.
ity acts in the ¥ direction. This probability has two peaks, at and(2), these results also fully specify a velocity-dependent
coordinates(+p/2,y,), separated by distange Assuming drag force that damps rolling motion. The apparent interac-
only that the wall repulsion acts in the radial direction, thetion of the wakes with the cell boundary gives rise to a

1
Fodp) = (EP/yp>mgsin 6. (12

VIIl. CONCLUSION
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